Publications

  • Filter Publications

2023

  • Klingmüller, K. and Lelieveld, J.: Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2, Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023 (2023)
  • Hamryszczak, Z., Dienhart, D., Brendel, B., Rohloff, R., Marno, D., Martinez, M., Harder, H., Pozzer, A., Bohn, B., Zöger, M., Lelieveld, J., and Fischer, H.: Measurement report: Hydrogen peroxide in the upper tropical troposphere over the Atlantic Ocean and western Africa during the CAFE-Africa aircraft campaign, Atmos. Chem. Phys., 23, 5929–5943, https://doi.org/10.5194/acp-23-5929-2023 (2023)
  • Milner, James, Robert Hughes, Sourangsu Chowdhury, Roberto Picetti, Rakesh Ghosh, Shunmay Yeung, Jos Lelieveld, Alan D. Dangour, Paul Wilkinson: Air pollution and child health impacts of decarbonization in 16 global cities: Modelling study, Environment International, 175, 107972, https://doi.org/10.1016/j.envint.2023 (2023)
  • Hufnagl, L., R. Eichinger, H. Garny, T. Birner, A. Kuchař, P. Jöckel, and P. Graf: Stratospheric Ozone Changes damp the CO2-induced Acceleration of the Brewer-Dobson Circulation. J. Climate, https://doi.org/10.1175/JCLI-D-22-0512.1 (2023)
  • Thor, R. N., Mertens, M., Matthes, S., Righi, M., Hendricks, J., Brinkop, S., Graf, P., Grewe, V., Jöckel, P., and Smith, S.: An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing, Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023 (2023)
  • Brunner, D., Kuhlmann, G., Henne, S., Koene, E., Kern, B., Wolff, S., Voigt, C., Jöckel, P., Kiemle, C., Roiger, A., Fiehn, A., Krautwurst, S., Gerilowski, K., Bovensmann, H., Borchardt, J., Galkowski, M., Gerbig, C., Marshall, J., Klonecki, A., Prunet, P., Hanfland, R., Pattantyús-Ábrahám, M., Wyszogrodzki, A., and Fix, A.: Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models, Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023 (2023)
  • Pérez-Invernón, F. J., Gordillo-Vázquez, F. J., Huntrieser, H., and Jöckel, P., Variation of lightning-ignited wildfire patterns under climate change, Nature Communication, 14, 739, https://doi.org/10.1038/s41467-023-36500-5 (2023)
  • Walz, R., Garny, H., and Birner, T.: Stratospheric Modulation of Tropical Upper-Tropospheric Warming-Induced Circulation Changes in an Idealized General Circulation Model, Journal of the Atmospheric Sciences, 80.2, 611-631, https://doi.org/10.1175/JAS-D-21-0232.1 (2023)
  • Vella, R., Forrest, M., Lelieveld, J., and Tost, H.: Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0), Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023 (2023)
  • Kluge, F., Hüneke, T., Lerot, C., Rosanka, S., Rotermund, M. K., Taraborrelli, D., Weyland, B., and Pfeilsticker, K.: Airborne glyoxal measurements in the marine and continental atmosphere: comparison with TROPOMI observations and EMAC simulations, Atmos. Chem. Phys., 23, 1369–1401, https://doi.org/10.5194/acp-23-1369-2023 (2023)
  • Schallock, J., Brühl, C., Bingen, C., Höpfner, M., Rieger, L., and Lelieveld, J.: Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model, Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023 (2023)
  • Quaglia, I., Timmreck, C., Niemeier, U., Visioni, D., Pitari, G., Brodowsky, C., Brühl, C., Dhomse, S. S., Franke, H., Laakso, A., Mann, G. W., Rozanov, E., and Sukhodolov, T.: Interactive stratospheric aerosol models’ response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption, Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023 (2023)
  • Abdelkader, M., Stenchikov, G., Pozzer, A., Tost, H., and Lelieveld, J.: The effect of ash, water vapor, and heterogeneous chemistry on the evolution of a Pinatubo-size volcanic cloud, Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023 (2023)
  • Schlund, M., Hassler, B., Lauer, A., Andela, B., Jöckel, P., Kazeroni, R., Loosveldt Tomas, S., Medeiros, B., Predoi, V., Sénési, S., Servonnat, J., Stacke, T., Vegas-Regidor, J., Zimmermann, K., and Eyring, V.: Evaluation of native Earth system model output with ESMValTool v2.6.0, Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023 (2023)
  • Dienhart, D., Brendel, B., Crowley, J. N., Eger, P. G., Harder, H., Martinez, M., Pozzer, A., Rohloff, R., Schuladen, J., Tauer, S., Walter, D., Lelieveld, J., and Fischer, H.: Formaldehyde and hydroperoxide distribution around the Arabian Peninsula – evaluation of EMAC model results with ship-based measurements, Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023 (2023)

2022

  • Holt, Laura A., François Lott, Rolando R. Garcia, George N. Kiladis, Yuan-Ming Cheng, James A. Anstey, Peter Braesicke, Andrew C. Bushell, Neal Butchart, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Yoshio Kawatani, Tobias Kerzenmacher, Young-Ha Kim, Charles McLandress, Hiroaki Naoe, Scott Osprey, Jadwiga H. Richter, Adam A. Scaife, John Scinocca, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, Seiji Yukimoto: An evaluation of tropical waves and wave forcing of the QBO in the QBOi models, Q J R Meteorol Soc, 148,  744, 1541 – 1567, https://doi.org/10.1002/qj.3827 (2022)
  • Beer, C. G., Hendricks, J., and Righi, M.: A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC, Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022 (2022)
  • Nützel, M., Brinkop, S., Dameris, M., Garny, H., Jöckel, P., Pan, L. L., and Park, M.: Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone, Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022 (2022)
  • Pletzer, J., Hauglustaine, D., Cohen, Y., Jöckel, P., & Grewe, V.: The climate impact of hydrogen-powered hypersonic transport, Atmospheric Chemistry and Physics, 22, 14 323–14 354, doi: 10.5194/acp-22-14323-2022, URL https://acp.copernicus.org/articles/22/14323/2022/ (2022)
  • Maruhashi, J., Grewe, V., Frömming, C., Jöckel, P., & Dedoussi, I. C.: Transport patterns of global aviation NOx and their short-term O3 radiative forcing – a machine learning approach, Atmospheric Chemistry and Physics, 22, 14 253–14 282, doi: 10.5194/acp-22-14253-2022, URL https://acp.copernicus.org/articles/22/14253/2022/ (2022)
  • Konopka, P., Tao, M., von Hobe, M., Hoffmann, L., Kloss, C., Ravegnani, F., Volk, C. M., Lauther, V., Zahn, A., Hoor, P., & Ploeger, F.: Tropospheric transport and unresolved convection: numerical experiments with CLaMS 2.0/MESSy, Geoscientific Model Development, 15, 7471–7487, doi: 10.5194/gmd-15-7471-2022, URL https://gmd.copernicus.org/articles/15/7471/2022/ (2022)
  • Nickl, A.-L.: Numerical simulation of CH4 and its stable isotopologues on regional and global scale, Dissertation, Technische Universität München, München, URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20220704-1634302-1-1 (2022)
  • Eleftheratos, K., Kapsomenakis, J., Fountoulakis, I., Zerefos, C. S., Jöckel, P., Dameris, M., Bais, A. F., Bernhard, G., Kouklaki, D., Tourpali, K., Stierle, S., Liley, J. B., Brogniez, C., Auriol, F., Diémoz, H., Simic, S., Petropavlovskikh, I., Lakkala, K., & Douvis, K.: Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations, Atmospheric Chemistry and Physics, 22, 12 827–12 855, doi: 10.5194/acp-22-12827-2022, URL https://acp.copernicus.org/articles/22/12827/2022/ (2022)
  • Nerobelov, G., Timofeyev, Y., Virolainen, Y., Polyakov, A., Solomatnikova, A., Poberovskii, A., Kirner, O., Al-Subari, O., Smyshlyaev, S., & Rozanov, E.: Measurements and Modelling of Total Ozone Columns near St. Petersburg, Russia, Remote Sensing, 14, doi: 10.3390/rs14163944, URL https://www.mdpi.com/2072-4292/14/16/3944 (2022)
  • Sophocleous, K. & Christoudias, T.: Reduced-Precision Chemical Kinetics in Atmospheric Models, Atmosphere, 13, doi: 10.3390/atmos13091418, URL https://www.mdpi.com/2073-4433/13/9/1418 (2022)
  • Reifenberg, S. F., Martin, A., Kohl, M., Bacer, S., Hamryszczak, Z., Tadic, I., Röder, L., Crowley, D. J., Fischer, H., Kaiser, K., Schneider, J., Dörich, R., Crowley, J. N., Tomsche, L., Marsing, A., Voigt, C., Zahn, A., Pöhlker, C., Holanda, B. A., Krüger, O., Pöschl, U., Pöhlker, M., Jöckel, P., Dorf, M., Schumann, U., Williams, J., Bohn, B., Curtius, J., Harder, H., Schlager, H., Lelieveld, J., & Pozzer, A.: Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe, Atmospheric Chemistry and Physics, 22, 10 901–10 917, doi: 10.5194/acp-22-10901-2022, URL https://acp.copernicus.org/articles/22/10901/2022/ (2022)
  • Hamryszczak, Z. T., Pozzer, A., Obersteiner, F., Bohn, B., Steil, B., Lelieveld, J., & Fischer, H.: Distribution of hydrogen peroxide over Europe during the BLUESKY aircraft campaign, Atmospheric Chemistry and Physics, 22, 9483–9497, doi: 10.5194/acp-22-9483-2022, URL https://acp.copernicus.org/articles/22/9483/2022/ (2022)
  • Rieger, V. S. & Grewe, V.: TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone, Geoscientific Model Development, 15, 5883–5903, doi: 10.5194/gmd-15-5883-2022, URL https://gmd.copernicus.org/articles/15/5883/2022/ (2022)
  • Spiegl, T. C., Yoden, S., Langematz, U., Sato, T., Chhin, R., Noda, S., Miyake, F., Kusano, K., Schaar, K., & Kunze, M.: Modeling the Transport and Deposition of 10Be Produced by the Strongest Solar Proton Event During the Holocene, Journal of Geophysical Research: Atmospheres, 127, e2021JD035 658, doi: https://doi.org/10.1029/2021JD035658, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JD035658, e2021JD035658 2021JD035658 (2022)
  • Walz, R.: Dynamical coupling of the stratosphere and troposphere in a changing climate, Ph.D. thesis, Ludwig-Maximilians-Universität, München, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-301607 (2022)
  • Krüger, O. O., Holanda, B. A., Chowdhury, S., Pozzer, A., Walter, D., Pöhlker, C., Andrés Hernández, M. D., Burrows, J. P., Voigt, C., Lelieveld, J., Quaas, J., Pöschl, U., & Pöhlker, M. L.: Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe, Atmospheric Chemistry and Physics, 22, 8683–8699, doi: 10.5194/acp-22-8683-2022, URL https://acp.copernicus.org/articles/22/8683/2022/ (2022)
  • Pérez-Invernón, F. J., Huntrieser, H., Erbertseder, T., Loyola, D., Valks, P., Liu, S., Allen, D. J., Pickering, K. E., Bucsela, E. J., Jöckel, P., van Geffen, J., Eskes, H., Soler, S., Gordillo-Vázquez, F. J., & Lapierre, J.: Quantification of lightning-produced NOx over the Pyrenees and the Ebro Valley by using different TROPOMI-NO2 and cloud research products, Atmospheric Measurement Techniques, 15, 3329–3351, doi: 10.5194/amt-15-3329-2022, URL https://amt.copernicus.org/articles/15/3329/2022/ (2022a)
  • Wang, M., Xiao, M., Bertozzi, B., Marie, G., Rörup, B., Schulze, B., Bardakov, R., He, X., Shen, J., Scholz, W., Marten, R., Dada, L., Baalbaki, R., Lopez, B., Lamkaddam, H., Manninen, H. E., Amorim, A., Ataei, F., Bogert, P., Brasseur, Z., Caudillo, L., De Menezes, L., Duplissy, J., Ekman, A. M., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, R., Heinritzi, M., Hofbauer, V., Höhler, K., Korhonen, K., Krechmer, J. E., Kürten, A., Lehtipalo, K., Mahfouz, N. G., Makhmutov, V., Massabò, D., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Petäjä, T., Philippov, M., Piedehierro, A. A., Pozzer, A., Ranjithkumar, A., Schervish, M., Schobesberger, S., Simon, M., Stozhkov, Y., Tomé, A., Umo, N. S., Vogel, F., Wagner, R., Wang, D. S., Weber, S. K., Welti, A., Wu, Y., Zauner, Sipilä, M., Winkler, P. M., Hansel, A., Baltensperger, U., Kulmala, M., Flagan, R. C., Curtius, J., Riipinen, I., Gordon, H., Lelieveld, J., El, Volkamer, R., Worsnop, D. R., Christoudias, T., Kirkby, J., Möhler, O., & Donahue, N. M.: Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation, Nature, 605, 483–489, doi: 10.1038/s41586-022-04605-4, URL https://doi.org/10.1038/s41586-022-04605-4 (2022)
  • Hufnagl, L.: The Influence of Ozone Changes on the Stratospheric Dynamics in 4xCO2 Climate Simulations, Master’s thesis, Ludwig-Maximilians-Universität München, URL https://elib.dlr.de/185531/ (2022)
  • Nussbaumer, C. M., Pozzer, A., Tadic, I., Röder, L., Obersteiner, F., Harder, H., Lelieveld, J., & Fischer, H.: Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe, Atmospheric Chemistry and Physics, 22, 6151–6165, doi: 10.5194/acp-22-6151-2022, URL https://acp.copernicus.org/articles/22/6151/2022/ (2022)
  • Sun, W., Berasategui, M., Pozzer, A., Lelieveld, J., & Crowley, J. N.: Kinetics of OH + SO2 + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour, Atmospheric Chemistry and Physics, 22, 4969–4984, doi: 10.5194/acp-22-4969-2022, URL https://acp.copernicus.org/articles/22/4969/2022/ (2022)
  • Andrés Hernández, M. D., Hilboll, A., Ziereis, H., Förster, E., Krüger, O. O., Kaiser, K., Schneider, J., Barnaba, F., Vrekoussis, M., Schmidt, J., Huntrieser, H., Blechschmidt, A.-M., George, M., Nenakhov, V., Harlass, T., Holanda, B. A., Wolf, J., Eirenschmalz, L., Krebsbach, M., Pöhlker, M. L., Kalisz Hedegaard, A. B., Mei, L., Pfeilsticker, K., Liu, Y., Koppmann, R., Schlager, H., Bohn, B., Schumann, U., Richter, A., Schreiner, B., Sauer, D., Baumann, R., Mertens, M., Jöckel, P., Kilian, M., Stratmann, G., Pöhlker, C., Campanelli, M., Pandolfi, M., Sicard, M., Gómez-Amo, J. L., Pujadas, M., Bigge, K., Kluge, F., Schwarz, A., Daskalakis, N., Walter, D., Zahn, A., Pöschl, U., Bönisch, H., Borrmann, S., Platt, U., & Burrows, J. P.: Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017, Atmospheric Chemistry and Physics, 22, 5877–5924, doi: 10.5194/acp-22-5877-2022, URL https://acp.copernicus.org/articles/22/5877/2022/ (2022)
  • Rao, P., Yin, F., Grewe, V., Yamashita, H., Jöckel, P., Matthes, S., Mertens, M., & Frömming, C.: Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories, Aerospace, 9, doi: 10.3390/aerospace9050231, URL https://www.mdpi.com/2226-4310/9/5/231 (2022)
  • Voigt, C., Lelieveld, J., Schlager, H., Schneider, J., Curtius, J., Meerkötter, R., Sauer, D., Bugliaro, L., Bohn, B., Crowley, J. N., Erbertseder, T., Gro, S., Hahn, V., Li, Q., Mertens, M., Pöhlker, M. L., Pozzer, A., Schumann, U., Tomsche, L., Williams, J., Zahn, A., Andreae, M., Borrmann, S., Bräuer, T., Dörich, R., Dörnbrack, A., Edtbauer, A., Ernle, L., Fischer, H., Giez, A., Granzin, M., Grewe, V., Harder, H., Heinritzi, M., Holanda, B. A., Jöckel, P., Kaiser, K., Krüger, O. O., Lucke, J., Marsing, A., Martin, A., Matthes, S., Pöhlker, C., Pöschl, U., Reifenberg, S., Ringsdorf, A., Scheibe, M., Tadic, I., Zauner-Wieczorek, M., Henke, R., & Rapp, M.: Cleaner skies during the COVID-19 lockdown, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-21-0012.1, URL https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-21-0012.1/BAMS-D-21-0012.1.xml (2022)
  • Pozzer, A., Reifenberg, S. F., Kumar, V., Franco, B., Kohl, M., Taraborrelli, D., Gromov, S., Ehrhart, S., Jöckel, P., Sander, R., Fall, V., Rosanka, S., Karydis, V., Akritidis, D., Emmerichs, T., Crippa, M., Guizzardi, D., Kaiser, J. W., Clarisse, L., Kiendler-Scharr, A., Tost, H., & Tsimpidi, A.: Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel, Geoscientific Model Development, 15, 2673–2710, doi: 10.5194/gmd-15-2673-2022, URL https://gmd.copernicus.org/articles/15/2673/2022/ (2022)
  • Ma, J., Zhou, X., Xu, X., Xu, X., Gromov, S., & Lelieveld, J.: Chapter 15 – Ozone and aerosols over the Tibetan Plateau, in: Asian Atmospheric Pollution, edited by Singh, R. P., pp. 287–302, Elsevier, doi: https://doi.org/10.1016/B978-0-12-816693-2.00008-1, URL https://www.sciencedirect.com/science/article/pii/B9780128166932000081 (2022)
  • Haenel, F., Woiwode, W., Buchmüller, J., Friedl-Vallon, F., Höpfner, M., Johansson, S., Khosrawi, F., Kirner, O., Kleinert, A., Oelhaf, H., Orphal, J., Ruhnke, R., Sinnhuber, B.-M., Ungermann, J., Weimer, M., & Braesicke, P.: Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models, Atmospheric Chemistry and Physics, 22, 2843–2870, doi: 10.5194/acp-22-2843-2022, URL https://acp.copernicus.org/articles/22/2843/2022/ (2022)
  • Sinnhuber, M., Nesse Tyssy, H., Asikainen, T., Bender, S., Funke, B., Hendrickx, K., Pettit, J. M., Reddmann, T., Rozanov, E., Schmidt, H., Smith-Johnsen, C., Sukhodolov, T., Szelg, M. E., van de Kamp, M., Verronen, P. T., Wissing, J. M., & Yakovchuk, O. S.: Heppa III Intercomparison Experiment on Electron Precipitation Impacts: 2. Model-Measurement Intercomparison of Nitric Oxide (NO) During a Geomagnetic Storm in April 2010, Journal of Geophysical Research: Space Physics, 127, e2021JA029 466, doi: https://doi.org/10.1029/2021JA029466, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JA029466, e2021JA029466 2021JA029466 (2022)
  • Pérez-Invernón, F. J., Huntrieser, H., Jöckel, P., & Gordillo-Vázquez, F. J.: A parameterization of long-continuing-current (LCC) lightning in the lightning submodel LNOX (version 3.0) of the Modular Earth Submodel System (MESSy, version 2.54), Geoscientific Model Development, 15, 1545–1565, doi: 10.5194/gmd-15-1545-2022, URL https://gmd.copernicus.org/articles/15/1545/2022/ (2022)
  • Majdzadeh, M., Stroud, C. A., Sioris, C., Makar, P. A., Akingunola, A., McLinden, C., Zhao, X., Moran, M. D., Abboud, I., & Chen, J.: Development of aerosol optical properties for improving the MESSy photolysis module in the GEM-MACH v2.4 air quality model and application for calculating photolysis rates in a biomass burning plume, Geoscientific Model Development, 15, 219–249, doi: 10.5194/gmd-15-219-2022, URL https://gmd.copernicus.org/articles/15/219/2022/ (2022)
  • Li, J., Hendricks, J., Righi, M., & Beer, C. G.: An aerosol classification scheme for global simulations using the K-means machine learning method, Geoscientific Model Development, 15, 509–533, doi: 10.5194/gmd-15-509-2022, URL https://gmd.copernicus.org/articles/15/509/2022/ (2022)
  • Chowdhury, S., Pozzer, A., Haines, A., Klingmüller, K., Münzel, T., Paasonen, P., Sharma, A., Venkataraman, C., & Lelieveld, J.: Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols, Environment International, 159, 107 020, doi: //doi.org/10.1016/j.envint.2021.107020, URL https://www.sciencedirect.com/science/article/pii/S0160412021006450 (2022)
  • Loeffel, S., Eichinger, R., Garny, H., Reddmann, T., Fritsch, F., Versick, S., Stiller, G., & Haenel, F.: The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends, Atmospheric Chemistry and Physics, 22, 1175–1193, doi: 10.5194/acp-22-1175-2022, URL https://acp.copernicus.org/articles/22/1175/2022/ (2022)
  • Scheffler, J., Ayarzagüena, B., Orsolini, Y. J., & Langematz, U.: Elevated stratopause events in the current and a future climate: A chemistry-climate model study, Journal of Atmospheric and Solar-Terrestrial Physics, 227, 105 804, doi: https://doi.org/10.1016/j.jastp.2021.105804, URL https://www.sciencedirect.com/science/article/pii/S1364682621002546 (2022)
  • Zheng, G., Su, H., Wang, S., Pozzer, A., & Cheng, Y.: Impact of non-ideality on reconstructing spatial and temporal variations in aerosol acidity with multiphase buffer theory, Atmospheric Chemistry and Physics, 22, 47–63, doi: 10.5194/acp-22-47-2022, URL https://acp.copernicus.org/articles/22/47/2022/ (2022)

2021

  • Maclean, A. M., Li, Y., Crescenzo, G. V., Smith, N. R., Karydis, V. A., Tsimpidi, A. P., Butenhoff, C. L., Faiola, C. L., Lelieveld, J., Nizkorodov, S. A., Shiraiwa, M., & Bertram, A. K.: Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements, ACS Earth and Space Chemistry, 5, 3458–3473, doi: 10.1021/acsearthspacechem.1c00296, URL https://doi.org/10.1021/acsearthspacechem.1c00296 (2021)
  • Höpfner, M., Kirner, O., Wetzel, G., Sinnhuber, B.-M., Haenel, F., Johansson, S., Orphal, J., Ruhnke, R., Stiller, G., & von Clarmann, T.: The Michelson Interferometer for Passive Atmospheric Sounding global climatology of BrONO2 2002–2012: a test for stratospheric bromine chemistry, Atmospheric Chemistry and Physics, 21, 18 433–18 464, doi: 10.5194/acp-21-18433-2021, URL https://acp.copernicus.org/articles/21/18433/2021/ (2021)
  • Righi, M., Hendricks, J., & Beer, C. G.: Exploring the uncertainties in the aviation soot–cirrus effect, Atmospheric Chemistry and Physics, 21, 17 267–17 289, doi: 10.5194/acp-21-17267-2021, URL https://acp.copernicus.org/articles/21/17267/2021/ (2021)
  • Karydis, V. A., Tsimpidi, A. P., Pozzer, A., & Lelieveld, J.: How alkaline compounds control atmospheric aerosol particle acidity, Atmospheric Chemistry and Physics, 21, 14 983–15 001, doi: 10.5194/acp-21-14983-2021, URL https://acp.copernicus.org/articles/21/14983/2021/ (2021)
  • Eirenschmalz, L.: Flugzeuggetragene Messungen von Ameisensäure und Schwefeldioxid in Emissionsfahnen urbaner Ballungsräume in Europa und Asien, Ph.D. thesis, Ludwig-Maximilians-Universität München, Munich, Germany, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-284364 (2021)
  • Rosanka, S.: A comprehensive assessment of the influence of oxygenated volatile organic compounds on the atmospheric composition, Ph.D. thesis, Universität zu Köln, Cologne, Germany, URL https://kups.ub.uni-koeln.de/53828/ (2021)
  • Fallmann, J., Barra, M., Kumar, V., & Tost, H.: Impact of urban imperviousness on boundary layer meteorology and air chemistry on a regional scale, Meteorologische Zeitschrift, 30, 349–367, doi: 10.1127/metz/2021/1075, URL http://dx.doi.org/10.1127/metz/2021/1075 (2021)
  • Kleinen, T., Gromov, S., Steil, B., & Brovkin, V.: Atmospheric methane underestimated in future climate projections, Environmental Research Letters, 16, 094 006, doi: 10.1088/1748-9326/ac1814, URL https://doi.org/10.1088/1748-9326/ac1814 (2021)
  • Klingmüller, K. & Lelieveld, J.: Climate-model-informed deep learning of global soil moisture distribution, Geoscientific Model Development, 14, 4429–4441, doi: 10.5194/gmd-14-4429-2021, URL https://gmd.copernicus.org/articles/14/4429/2021/ (2021)
  • Kumar, V., Remmers, J., Beirle, S., Fallmann, J., Kerkweg, A., Lelieveld, J., Mertens, M., Pozzer, A., Steil, B., Barra, M., Tost, H., & Wagner, T.: Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO2 measurements, Atmospheric Measurement Techniques, 14, 5241–5269, doi: 10.5194/amt-14-5241-2021, URL https://amt.copernicus.org/articles/14/5241/2021/ (2021)
  • Rosanka, S., Franco, B., Clarisse, L., Coheur, P.-F., Pozzer, A., Wahner, A., & Taraborrelli, D.: The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition, Atmospheric Chemistry and Physics, 21, 11 257–11 288, doi: 10.5194/acp-21-11257-2021, URL https://acp.copernicus.org/articles/21/11257/2021/ (2021a)
  • Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A., & Wagner, T.: Catalog of NOx emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI, Earth System Science Data, 13, 2995–3012, doi: 10.5194/essd-13-2995-2021, URL https://essd.copernicus.org/articles/13/2995/2021/ (2021)
  • Rosanka, S., Sander, R., Franco, B., Wespes, C., Wahner, A., & Taraborrelli, D.: Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants, Atmospheric Chemistry and Physics, 21, 9909–9930, doi: 10.5194/acp-21-9909-2021, URL https://acp.copernicus.org/articles/21/9909/2021/ (2021b)
  • Rosanka, S., Sander, R., Wahner, A., & Taraborrelli, D.: Oxidation of low-molecular-weight organic compounds in cloud droplets: development of the Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) in CAABA/MECCA (version 4.5.0), Geoscientific Model Development, 14, 4103–4115, doi: 10.5194/gmd-14-4103-2021, URL https://gmd.copernicus.org/articles/14/4103/2021/ (2021c)
  • Frömming, C., Grewe, V., Brinkop, S., Jöckel, P., Haslerud, A. S., Rosanka, S., van Manen, J., & Matthes, S.: Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions, Atmospheric Chemistry and Physics, 21, 9151–9172, doi: 10.5194/acp-21-9151-2021, URL https://acp.copernicus.org/articles/21/9151/2021/ (2021)
  • Wetzel, G., Friedl-Vallon, F., Glatthor, N., Grooß, J.-U., Gulde, T., Höpfner, M., Johansson, S., Khosrawi, F., Kirner, O., Kleinert, A., Kretschmer, E., Maucher, G., Nordmeyer, H., Oelhaf, H., Orphal, J., Piesch, C., Sinnhuber, B.-M., Ungermann, J., & Vogel, B.: Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations, Atmospheric Chemistry and Physics, 21, 8213–8232, doi: 10.5194/acp-21-8213-2021, URL https://acp.copernicus.org/articles/21/8213/2021/ (2021)
  • Tadic, I., Nussbaumer, C. M., Bohn, B., Harder, H., Marno, D., Martinez, M., Obersteiner, F., Parchatka, U., Pozzer, A., Rohloff, R., Zöger, M., Lelieveld, J., & Fischer, H.: Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa, Atmospheric Chemistry and Physics, 21, 8195–8211, doi: 10.5194/acp-21-8195-2021, URL https://acp.copernicus.org/articles/21/8195/2021/ (2021)
  • Schallock, J.: Stratospheric Aerosol: Budgets, Chemistry and radiative Transfer based on a complex Chemistry Climate Model and Satellite and Field Campaign Data, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, URL http://doi.org/10.25358/openscience-5837 (2021)
  • Franco, B., Blumenstock, T., Cho, C., Clarisse, L., Clerbaux, C., Coheur, P., De Mazière, M., De Smedt, I., Dorn, H., Emmerichs, T., Fuchs, H., Gkatzelis, G., Griffith, D., Gromov, S., Hannigan, J., Hase, F., Hohaus, T., Jones, N., Kerkweg, A., Kiendler, Lutsch, E., Mahieu, E., Novelli, A., Ortega, I., Paton, Pommier, M., Pozzer, A., Reimer, D., Rosanka, S., Sander, R., Schneider, M., Strong, K., Tillmann, R., Van Roozendael, M., Vereecken, L., Vigouroux, C., Wahner, A., & Taraborrelli, D.: Ubiquitous atmospheric production of organic acids mediated by cloud droplets, Nature, 593, 233–237, doi: 10.1038/s41586-021-03462-x, URL https://doi.org/10.1038/s41586-021-03462-x (2021)
  • Pisoft, P., Sacha, P., Polvani, L. M., Ael, J. A., de la Torre, L., Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C., Karlicky, J., Kuchar, A., Miksovsky, J., Zak, M., & Rieder, H. E.: Stratospheric contraction caused by increasing greenhouse gases, Environmental Research Letters, URL http://iopscience.iop.org/article/10.1088/1748-9326/abfe2b (2021)
  • Dietmüller, S., Garny, H., Eichinger, R., & Ball, W. T.: Analysis of recent lower-stratospheric ozone trends in chemistry climate models, Atmospheric Chemistry and Physics, 21, 6811–6837, doi: 10.5194/acp-21-6811-2021, URL https://acp.copernicus.org/articles/21/6811/2021/ (2021)
  • Chowdhury, S., Haines, A., Klingmueller, K., Kumar, V., Pozzer, A., Venkataraman, C., Witt, C., & Lelieveld, J.: Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO2, Environmental Research Letters, doi: 10.1088/1748-9326/abe909, URL https://doi.org/10.1088/1748-9326/abe909 (2021)
  • Mertens, M., Jöckel, P., Matthes, S., Nützel, M., Grewe, V., & Sausen, R.: COVID-19 induced lower-tropospheric ozone changes, Environmental Research Letters, doi: 10.1088/1748-9326/abf191, URL http://iopscience.iop.org/article/10.1088/1748-9326/abf191 (2021)
  • Matthes, S., Lim, L., Burkhardt, U., Dahlmann, K., Dietmüller, S., Grewe, V., Haslerud, A. S., Hendricks, J., Owen, B., Pitari, G., Righi, M., & Skowron, A.: Mitigation of Non-CO2 Aviations Climate Impact by Changing Cruise Altitudes, Aerospace, 8, doi: 10.3390/aerospace8020036, URL https://www.mdpi.com/2226-4310/8/2/36 (2021)
  • Garfinkel, C. I., Harari, O., Ziskin Ziv, S., Rao, J., Morgenstern, O., Zeng, G., Tilmes, S., Kinnison, D., O’Connor, F. M., Butchart, N., Deushi, M., Jöckel, P., Pozzer, A., & Davis, S.: Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models, Atmospheric Chemistry and Physics, 21, 3725–3740, doi: 10.5194/acp-21-3725-2021, URL https://acp.copernicus.org/articles/21/3725/2021/ (2021)
  • Sheese, P. E., Walker, K. A., Boone, C. D., Degenstein, D. A., Kolonjari, F., Plummer, D., Kinnison, D. E., Jöckel, P., & von Clarmann, T.: Model estimations of geophysical variability between satellite measurements of ozone profiles, Atmospheric Measurement Techniques, 14, 1425–1438, doi: 10.5194/amt-14-1425-2021, URL https://amt.copernicus.org/articles/14/1425/2021/ (2021)
  • Taraborrelli, D., Cabrera-Perez, D., Bacer, S., Gromov, S., Lelieveld, J., Sander, R., & Pozzer, A.: Influence of aromatics on tropospheric gas-phase composition, Atmospheric Chemistry and Physics, 21, 2615–2636, doi: 10.5194/acp-21-2615-2021, URL https://acp.copernicus.org/articles/21/2615/2021/ (2021)
  • Bacer, S., Sullivan, S. C., Sourdeval, O., Tost, H., Lelieveld, J., & Pozzer, A.: Cold cloud microphysical process rates in a global chemistry–climate model, Atmospheric Chemistry and Physics, 21, 1485–1505, doi: 10.5194/acp-21-1485-2021, URL https://acp.copernicus.org/articles/21/1485/2021/ (2021)
  • Winterstein, F. & Jöckel, P.: Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0), Geoscientific Model Development, 14, 661–674, doi: 10.5194/gmd-14-661-2021, URL https://gmd.copernicus.org/articles/14/661/2021/ (2021)
  • Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., & Frömming, C.: Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0, Aerospace, 8, doi: 10.3390/aerospace8020033, URL https://www.mdpi.com/2226-4310/8/2/33 (2021)
  • Emmerichs, T., Kerkweg, A., Ouwersloot, H., Fares, S., Mammarella, I., & Taraborrelli, D.: A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54, Geoscientific Model Development, 14, 495–519, doi: 10.5194/gmd-14-495-2021, URL https://gmd.copernicus.org/articles/14/495/2021/ (2021)
  • Stecher, L., Winterstein, F., Dameris, M., Jöckel, P., Ponater, M., & Kunze, M.: Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean, Atmospheric Chemistry and Physics, 21, 731–754, doi: 10.5194/acp-21-731-2021, URL https://acp.copernicus.org/articles/21/731/2021/ (2021)
  • Karagodin-Doyennel, A., Rozanov, E., Kuchar, A., Ball, W., Arsenovic, P., Remsberg, E., Jöckel, P., Kunze, M., Plummer, D. A., Stenke, A., Marsh, D., Kinnison, D., & Peter, T.: The response of mesospheric H2O and CO to solar irradiance variability in models and observations, Atmospheric Chemistry and Physics, 21, 201–216, doi: 10.5194/acp-21-201-2021, URL https://acp.copernicus.org/articles/21/201/2021/ (2021)
  • Dafka, S., Akritidis, D., Zanis, P., Pozzer, A., Xoplaki, E., Luterbacher, J., & Zerefos, C.: On the link between the Etesian winds, tropopause folds and tropospheric ozone over the Eastern Mediterranean during summer, Atmospheric Research, 248, 105 161, doi: https://doi.org/10.1016/j.atmosres.2020.105161, URL http://www.sciencedirect.com/science/article/pii/S0169809520310978 (2021)
  • Chang, D., Lelieveld, J., Steil, B., Yoon, J., Yum, S., & Kim, A.-H.: Variability of aerosol-cloud interactions induced by different cloud droplet nucleation schemes, Atmospheric Research, 250, 105 367, doi: https://doi.org/10.1016/j.atmosres.2020.105367, URL http://www.sciencedirect.com/science/article/pii/S0169809520313041 (2021)

2020

  • Archibald, A., Neu, J., Elshorbany, Y., Cooper, O., Young, P., Akiyoshi, H., Cox, R., Coyle, M., Derwent, R., Deushi, M., Finco, A., Frost, G., Galbally, I., Gerosa, G., Granier, C., Griffiths, P., Hossaini, R., Hu, L., Jöckel, P., Josse, B., Lin, M., Mertens, M., Morgenstern, O., Naja, M., Naik, V., Oltmans, S., Plummer, D., Revell, L., Saiz, Saxena, P., Shin, Y., Shahid, I., Shallcross, D., Tilmes, S., Trickl, T., Wallington, T., Wang, T., Worden, H., & Zeng, G.: Tropospheric Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100, Elementa: Science of the Anthropocene, 8, doi: 10.1525/elementa.2020.034, URL https://doi.org/10.1525/elementa.2020.034 (2020)
  • Virolainen, Y., Polyakov, A., & Kirner, O.: Optimization of Procedure for Determining Chlorine Nitrate in the Atmosphere from Ground-Based Spectroscopic Measurements, Journal of Applied Spectroscopy, 87, 319–325, doi: 10.1007/s10812, URL https://doi.org/10.1007/s10812 (2020)
  • Gierens, K., Matthes, S., & Rohs, S.: How Well Can Persistent Contrails Be Predicted?, Aerospace, 7, doi: 10.3390/aerospace7120169, URL https://www.mdpi.com/2226-4310/7/12/169 (2020)
  • Johansson, S., Höpfner, M., Kirner, O., Wohltmann, I., Bucci, S., Legras, B., Friedl-Vallon, F., Glatthor, N., Kretschmer, E., Ungermann, J., & Wetzel, G.: Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017, Atmospheric Chemistry and Physics, 20, 14 695–14 715, doi: 10.5194/acp-20-14695-2020, URL https://acp.copernicus.org/articles/20/14695/2020/ (2020)
  • Dahlmann, K., Matthes, S., Yamashita, H., Unterstrasser, S., Grewe, V., & Marks, T.: Assessing the Climate Impact of Formation Flights, Aerospace, 7, doi: 10.3390/aerospace7120172, URL https://www.mdpi.com/2226-4310/7/12/172 (2020)
  • Klingmüller, K., Karydis, V. A., Bacer, S., Stenchikov, G. L., & Lelieveld, J.: Weaker cooling by aerosols due to dust–pollution interactions, Atmospheric Chemistry and Physics, 20, 15 285–15 295, doi: 10.5194/acp-20-15285-2020, URL https://acp.copernicus.org/articles/20/15285/2020/ (2020)
  • Charlesworth, E. J., Dugstad, A.-K., Fritsch, F., Jöckel, P., & Plöger, F.: Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model, Atmospheric Chemistry and Physics, 20, 15 227–15 245, doi: 10.5194/acp-20-15227-2020, URL https://acp.copernicus.org/articles/20/15227/2020/ (2020)
  • Wilson, J., Octaviani, M., Bandowe, B. A. M., Wietzoreck, M., Zetzsch, C., Pöschl, U., Berkemeier, T., & Lammel, G.: Modeling the Formation, Degradation, and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene in the Global Atmosphere, Environmental Science & Technology, 0, null, doi: 10.1021/acs.est.0c04319, URL https://doi.org/10.1021/acs.est.0c04319, pMID: 33112146 (2020)
  • Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, R. B., Deushi, M., Jöckel, P., Kinnison, D., Kirner, O., Strode, S., Tilmes, S., Dlugokencky, E. J., & Zheng, B.: On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget, Atmospheric Chemistry and Physics, 20, 13 011–13 022, doi: 10.5194/acp-20-13011-2020, URL https://acp.copernicus.org/articles/20/13011/2020/ (2020)
  • Garny, H., Walz, R., Nützel, M., & Birner, T.: Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup, Geoscientific Model Development, 13, 5229–5257, doi: 10.5194/gmd-13-5229-2020, URL https://gmd.copernicus.org/articles/13/5229/2020/ (2020)
  • Hottmann, B., Hafermann, S., Tomsche, L., Marno, D., Martinez, M., Harder, H., Pozzer, A., Neumaier, M., Zahn, A., Bohn, B., Stratmann, G., Ziereis, H., Lelieveld, J., & Fischer, H.: Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere, Atmospheric Chemistry and Physics, 20, 12 655–12 673, doi: 10.5194/acp-20-12655-2020, URL https://acp.copernicus.org/articles/20/12655/2020/ (2020)
  • Pozzer, A., Dominici, F., Haines, A., Witt, C., Münzel, T., & Lelieveld, J.: Regional and global contributions of air pollution to risk of death from COVID-19, Cardiovascular Research, doi: 10.1093/cvr/cvaa288, URL https://doi.org/10.1093/cvr/cvaa288, cvaa288 (2020a)
  • Rosanka, S., Frömming, C., & Grewe, V.: The impact of weather patterns and related transport processes on aviation’s contribution to ozone and methane concentrations from NOx emissions, Atmospheric Chemistry and Physics, 20, 12 347–12 361, doi: 10.5194/acp-20-12347-2020, URL https://acp.copernicus.org/articles/20/12347/2020/ (2020a)
  • Liu, N., Ma, J., Xu, W., Wang, Y., Pozzer, A., & Lelieveld, J.: A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China, Atmospheric Environment, 242, 117 672, doi: https://doi.org/10.1016/j.atmosenv.2020.117672, URL http://www.sciencedirect.com/science/article/pii/S1352231020304040 (2020)
  • Pozzer, A., Schultz, M. G., & Helmig, D.: Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States, Environ. Sci. Technol., 54, 12 423–12 433, doi: 10.1021/acs.est.9b06983, URL https://doi.org/10.1021/acs.est.9b06983 (2020b)
  • Yin, F., Grewe, V., & Gierens, K.: Impact of Hybrid-Electric Aircraft on Contrail Coverage, Aerospace, 7, doi: 10.3390/aerospace7100147, URL https://www.mdpi.com/2226-4310/7/10/147 (2020)
  • Kilian, M., Brinkop, S., & Jöckel, P.: Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere, Atmospheric Chemistry and Physics, 20, 11 697–11 715, doi: 10.5194/acp-20-11697-2020, URL https://acp.copernicus.org/articles/20/11697/2020/ (2020)
  • Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., & Frömming, C.: Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0, Geoscientific Model Development, 13, 4869–4890, doi: 10.5194/gmd-13-4869-2020, URL https://gmd.copernicus.org/articles/13/4869/2020/ (2020)
  • Wang, N., Edtbauer, A., Stönner, C., Pozzer, A., Bourtsoukidis, E., Ernle, L., Dienhart, D., Hottmann, B., Fischer, H., Schuladen, J., Crowley, J. N., Paris, J.-D., Lelieveld, J., & Williams, J.: Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison, Atmospheric Chemistry and Physics, 20, 10 807–10 829, doi: 10.5194/acp-20-10807-2020, URL https://acp.copernicus.org/articles/20/10807/2020/ (2020)
  • Beer, C. G., Hendricks, J., Righi, M., Heinold, B., Tegen, I., Groß, S., Sauer, D., Walser, A., & Weinzierl, B.: Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54, Geoscientific Model Development, 13, 4287–4303, doi: 10.5194/gmd-13-4287-2020, URL https://gmd.copernicus.org/articles/13/4287/2020/ (2020)
  • Bourtsoukidis, E., Pozzer, A., Sattler, T., Matthaios, V., Ernle, L., Edtbauer, A., Fischer, H., Könemann, T., Osipov, S., Paris, J., Pfannerstill, E., Stönner, C., Tadic, I., Walter, D., Wang, N., Lelieveld, J., & Williams, J.: The Red Sea Deep Water is a potent source of atmospheric ethane and propane, Nature Communications, 11, 447, doi: 10.1038/s41467, URL https://doi.org/10.1038/s41467 (2020)
  • Eichinger, R. & Šácha, P.: Overestimated acceleration of the advective BrewerDobson circulation due to stratospheric cooling, Quarterly Journal of the Royal Meteorological Society, n/a, doi: 10.1002/qj.3876, URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3876 (2020)
  • Amos, M., Young, P. J., Hosking, J. S., Lamarque, J.-F., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Deushi, M., Jöckel, P., Kinnison, D., Kirner, O., Kunze, M., Marchand, M., Plummer, D. A., Saint-Martin, D., Sudo, K., Tilmes, S., & Yamashita, Y.: Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence, Atmospheric Chemistry and Physics, 20, 9961–9977, doi: 10.5194/acp-20-9961-2020, URL https://acp.copernicus.org/articles/20/9961/2020/ (2020)
  • Fritsch, F., Garny, H., Engel, A., Bönisch, H., & Eichinger, R.: Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6, Atmospheric Chemistry and Physics, 20, 8709–8725, doi: 10.5194/acp-20-8709-2020, URL https://www.atmos-chem-phys.net/20/8709/2020/ (2020)
  • Chowdhury, S., Pozzer, A., Dey, S., Klingmueller, K., & Lelieveld, J.: Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015, Environmental Research Letters, 15, 074 010, doi: 10.1088/1748-9326/ab8334, URL https://iopscience.iop.org/article/10.1088/1748-9326/ab8334 (2020)
  • Mertens, M., Kerkweg, A., Grewe, V., Jöckel, P., & Sausen, R.: Attributing ozone and its precursors to land transport emissions in Europe and Germany, Atmospheric Chemistry and Physics, 20, 7843–7873, doi: 10.5194/acp-20-7843-2020, URL https://www.atmos-chem-phys.net/20/7843/2020/ (2020a)
  • Rybka, H. & Tost, H.: Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration, Geoscientific Model Development, 13, 2671–2694, doi: 10.5194/gmd-13-2671-2020, URL https://www.geosci-model-dev.net/13/2671/2020/ (2020)
  • Spiegl, T. & Langematz, U.: Twenty-First-Century Climate Change Hot Spots in the Light of a Weakening Sun, Journal of Climate, 33, 3431–3447, doi: 10.1175/JCLI-D-19-0059.1, URL https://doi.org/10.1175/JCLI-D-19-0059.1 (2020)
  • Kunze, M., Kruschke, T., Langematz, U., Sinnhuber, M., Reddmann, T., & Matthes, K.: Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone, Atmospheric Chemistry and Physics, 20, 6991–7019, doi: 10.5194/acp-20-6991-2020, URL https://www.atmos-chem-phys.net/20/6991/2020/ (2020)
  • Abalos, M., Orbe, C., Kinnison, D. E., Plummer, D., Oman, L. D., Jöckel, P., Morgenstern, O., Garcia, R. R., Zeng, G., Stone, K. A., & Dameris, M.: Future trends in stratosphere-to-troposphere transport in CCMI models, Atmospheric Chemistry and Physics, 20, 6883–6901, doi: 10.5194/acp-20-6883-2020, URL https://www.atmos-chem-phys.net/20/6883/2020/ (2020)
  • Rosanka, S., Vu, G. H. T., Nguyen, H. M. T., Pham, T. V., Javed, U., Taraborrelli, D., & Vereecken, L.: Atmospheric chemical loss processes of isocyanic acid (HNCO): a combined theoretical kinetic and global modelling study, Atmospheric Chemistry and Physics, 20, 6671–6686, doi: 10.5194/acp-20-6671-2020, URL https://www.atmos-chem-phys.net/20/6671/2020/ (2020b)
  • Zimmermann, P. H., Brenninkmeijer, C. A. M., Pozzer, A., Jöckel, P., Winterstein, F., Zahn, A., Houweling, S., & Lelieveld, J.: Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations, Atmospheric Chemistry and Physics, 20, 5787–5809, doi: 10.5194/acp-20-5787-2020, URL https://www.atmos-chem-phys.net/20/5787/2020/ (2020)
  • Klausner, T., Mertens, M., Huntrieser, H., Galkowski, M., Kuhlmann, G., Baumann, R., Fiehn, A., Jöckel, P., Pühl, M., & Roiger, A.: Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO2 and CH4 in situ observations in summer 2018, Elem. Sci. Anth., 8(1), p.15, doi: 10.1525/elementa.411, URL http://doi.org/10.1525/elementa.411 (2020)
  • Nickl, A.-L., Mertens, M., Roiger, A., Fix, A., Amediek, A., Fiehn, A., Gerbig, C., Galkowski, M., Kerkweg, A., Klausner, T., Eckl, M., & Jöckel, P.: Hindcasting and forecasting of regional methane from coal mine emissions in the Upper Silesian Coal Basin using the online nested global regional chemistry–climate model MECO(n) (MESSy v2.53), Geoscientific Model Development, 13, 1925–1943, doi: 10.5194/gmd-13-1925-2020, URL https://www.geosci-model-dev.net/13/1925/2020/ (2020)
  • Keber, T., Bönisch, H., Hartick, C., Hauck, M., Lefrancois, F., Obersteiner, F., Ringsdorf, A., Schohl, N., Schuck, T., Hossaini, R., Graf, P., Jöckel, P., & Engel, A.: Bromine from short-lived source gases in the extratropical northern hemispheric upper troposphere and lower stratosphere (UTLS), Atmospheric Chemistry and Physics, 20, 4105–4132, doi: 10.5194/acp-20-4105-2020, URL https://www.atmos-chem-phys.net/20/4105/2020/ (2020)
  • Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Reimer, D., Rohrer, F., Rosanka, S., Taraborrelli, D., Tillmann, R., Wegener, R., Yu, Z., Kiendler-Scharr, A., Wahner, A., & Fuchs, H.: Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR, Atmospheric Chemistry and Physics, 20, 3333–3355, doi: 10.5194/acp-20-3333-2020, URL https://www.atmos-chem-phys.net/20/3333/2020/ (2020)
  • Orbe, C., Plummer, D. A., Waugh, D. W., Yang, H., Jöckel, P., Kinnison, D. E., Josse, B., Marecal, V., Deushi, M., Abraham, N. L., Archibald, A. T., Chipperfield, M. P., Dhomse, S., Feng, W., & Bekki, S.: Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative, Atmospheric Chemistry and Physics, 20, 3809–3840, doi: 10.5194/acp-20-3809-2020, URL https://www.atmos-chem-phys.net/20/3809/2020/ (2020)
  • Righi, M., Hendricks, J., Lohmann, U., Beer, C. G., Hahn, V., Heinold, B., Heller, R., Krämer, M., Ponater, M., Rolf, C., Tegen, I., & Voigt, C.: Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model, Geoscientific Model Development, 13, 1635–1661, doi: 10.5194/gmd-13-1635-2020, URL https://www.geosci-model-dev.net/13/1635/2020/ (2020)
  • Forrest, M., Tost, H., Lelieveld, J., & Hickler, T.: Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53), Geoscientific Model Development, 13, 1285–1309, doi: 10.5194/gmd-13-1285-2020, URL https://www.geosci-model-dev.net/13/1285/2020/ (2020)
  • Amedro, D., Berasategui, M., Bunkan, A. J. C., Pozzer, A., Lelieveld, J., & Crowley, J. N.: Kinetics of the OH + NO2 reaction: effect of water vapour and new parameterization for global modelling, Atmospheric Chemistry and Physics, 20, 3091–3105, doi: 10.5194/acp-20-3091-2020, URL https://www.atmos-chem-phys.net/20/3091/2020/ (2020)
  • Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M., Richter, J. H., Serva, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Garcia, R. R., Gray, L. J., Hamilton, K., Kerzenmacher, T., Kim, Y.-H., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Smith, A. K., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., & Yukimoto, S.: Evaluation of the Quasi-Biennial Oscillation in global climate models for the SPARC QBO-initiative, Quarterly Journal of the Royal Meteorological Society, n/a, doi: 10.1002/qj.3765, URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3765 (2020)
  • Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T.: Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective, Cardiovascular Research, doi: 10.1093/cvr/cvaa025, URL https://doi.org/10.1093/cvr/cvaa025 (2020)
  • Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva, F., Anstey, J., Simpson, I. R., Osprey, S., Hamilton, K., Braesicke, P., Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., & Yukimoto, S.: Response of the Quasi-Biennial Oscillation to a warming climate in global climate models, Quarterly Journal of the Royal Meteorological Society, n/a, doi: 10.1002/qj.3749, URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3749 (2020)
  • Eleftheratos, K., Kapsomenakis, J., Zerefos, C. S., Bais, A. F., Fountoulakis, I., Dameris, M., Jöckel, P., Haslerud, A. S., Godin-Beekmann, S., Steinbrecht, W., Petropavlovskikh, I., Brogniez, C., Leblanc, T., Liley, J. B., Querel, R., & Swart, D. P. J.: Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level, Atmosphere, 11, doi: 10.3390/atmos11030228, URL https://www.mdpi.com/2073-4433/11/3/228 (2020)
  • Eichinger, R., Garny, H., Šácha, P., Danker, J., Dietmüller, S., & Oberländer-Hayn, S.: Effects of missing gravity waves on stratospheric dynamics; part 1: climatology, Climate Dynamics, doi: 10.1007/s00382-020-05166-w, URL https://doi.org/10.1007/s00382-020-05166-w (2020)
  • Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., Haslerud, A. S., Jöckel, P., Josse, B., Kinnison, D. E., Klekociuk, A., Manyin, M. E., Marécal, V., Morgenstern, O., Murray, L. T., Myhre, G., Oman, L. D., Pitari, G., Pozzer, A., Quaglia, I., Revell, L. E., Rozanov, E., Stenke, A., Stone, K., Strahan, S., Tilmes, S., Tost, H., Westervelt, D. M., & Zeng, G.: A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmospheric Chemistry and Physics, 20, 1341–1361, doi: 10.5194/acp-20-1341-2020, URL https://www.atmos-chem-phys.net/20/1341/2020/ (2020)
  • Chen, Y., Cheng, Y., Ma, N., Wei, C., Ran, L., Wolke, R., Größ, J., Wang, Q., Pozzer, A., Denier van der Gon, H. A. C., Spindler, G., Lelieveld, J., Tegen, I., Su, H., & Wiedensohler, A.: Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate, Atmospheric Chemistry and Physics, 20, 771–786, doi: 10.5194/acp-20-771-2020, URL https://acp.copernicus.org/articles/20/771/2020/ (2020)
  • Mertens, M., Kerkweg, A., Grewe, V., Jöckel, P., & Sausen, R.: Are contributions of emissions to ozone a matter of scale? – a study using MECO(n) (MESSy v2.50), Geoscientific Model Development, 13, 363–383, doi: 10.5194/gmd-13-363-2020, URL https://www.geosci-model-dev.net/13/363/2020/ (2020b)
  • Lossow, S., Högberg, C., Khosrawi, F., Stiller, G. P., Bauer, R., Walker, K. A., Kellmann, S., Linden, A., Kiefer, M., Glatthor, N., von Clarmann, T., Murtagh, D. P., Steinwagner, J., Röckmann, T., & Eichinger, R.: A reassessment of the discrepancies in the annual variation of δDH2in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets, Atmospheric Measurement Techniques, 13, 287–308, doi: 10.5194/amt-13-287-2020, URL https://www.atmos-meas-tech.net/13/287/2020/ (2020)
  • Smith, A. K., Holt, L. A., Garcia, R. R., Anstey, J. A., Serva, F., Butchart, N., Osprey, S., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Gray, L., Kerzenmacher, T., Naoe, H., Richter, J., Versick, S., Schenzinger, V., Watanabe, S., & Yoshida, K.: The equatorial stratospheric semiannual oscillation and time-mean winds in QBOi models, Quarterly Journal of the Royal Meteorological Society, n/a, 1–17, doi: 10.1002/qj.3690, URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3690 (2020)
  • Kuai, L., Bowman, K. W., Miyazaki, K., Deushi, M., Revell, L., Rozanov, E., Paulot, F., Strode, S., Conley, A., Lamarque, J.-F., Jöckel, P., Plummer, D. A., Oman, L. D., Worden, H., Kulawik, S., Paynter, D., Stenke, A., & Kunze, M.: Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites, Atmospheric Chemistry and Physics, 20, 281–301, doi: 10.5194/acp-20-281-2020, URL https://www.atmos-chem-phys.net/20/281/2020/ (2020)
  • Fritsch, F. R. L.: Modeling of stratospheric transport time distributions for inert and chemically active species, Ph.D. thesis, Ludwig-Maximilians-Universität, München, URL https://doi.org/10.5282/edoc.27375 (2020)
  • Scheffler, J.: Untersuchung der Rolle der Ozon-Klimawechselwirkungen für die dekadische und langfristige Klimavorhersage mithilfe des Klima-Chemie-Modells EMAC mit schneller stratosphärischer Ozonchemie, Ph.D. thesis, Freie Universität Berlin, URL http://dx.doi.org/10.17169/refubium-27109 (2020)

2019

  • Alvanos, M. & Christoudias, T.: Accelerating Atmospheric Chemical Kinetics for Climate Simulations, IEEE Transactions on Parallel and Distributed Systems, 30, 2396–2407, doi: 10.1109/TPDS.2019.2918798, URL https://doi.org/10.1109/TPDS.2019.2918798 (2019)
  • Akritidis, D., Pozzer, A., & Zanis, P.: On the impact of future climate change on tropopause folds and tropospheric ozone, Atmospheric Chemistry and Physics, 19, 14 387–14 401, doi: 10.5194/acp-19-14387-2019, URL https://www.atmos-chem-phys.net/19/14387/2019/ (2019)
  • Dameris, M., Jöckel, P., & Nützel, M.: Possible implications of enhanced chlorofluorocarbon-11 concentrations on ozone, Atmospheric Chemistry and Physics, 19, 13 759–13 771, doi: 10.5194/acp-19-13759-2019, URL https://www.atmos-chem-phys.net/19/13759/2019/ (2019)
  • Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, R. B., Hauglustaine, D. A., Szopa, S., Stavert, A. R., Abraham, N. L., Archibald, A. T., Bekki, S., Deushi, M., Jöckel, P., Josse, B., Kinnison, D., Kirner, O., Marécal, V., O’Connor, F. M., Plummer, D. A., Revell, L. E., Rozanov, E., Stenke, A., Strode, S., Tilmes, S., Dlugokencky, E. J., & Zheng, B.: Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period, Atmospheric Chemistry and Physics, 19, 13 701–13 723, doi: 10.5194/acp-19-13701-2019, URL https://www.atmos-chem-phys.net/19/13701/2019/ (2019)
  • Luther, A., Kleinschek, R., Scheidweiler, L., Defratyka, S., Stanisavljevic, M., Forstmaier, A., Dandocsi, A., Wolff, S., Dubravica, D., Wildmann, N., Kostinek, J., Jöckel, P., Nickl, A.-L., Klausner, T., Hase, F., Frey, M., Chen, J., Dietrich, F., Necki, J., Swolkień, J., Fix, A., Roiger, A., & Butz, A.: Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry, Atmospheric Measurement Techniques, 12, 5217–5230, doi: 10.5194/amt-12-5217-2019, URL https://www.atmos-meas-tech.net/12/5217/2019/ (2019)
  • Ma, J., Brühl, C., He, Q., Steil, B., Karydis, V. A., Klingmüller, K., Tost, H., Chen, B., Jin, Y., Liu, N., Xu, X., Yan, P., Zhou, X., Abdelrahman, K., Pozzer, A., & Lelieveld, J.: Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon, Atmospheric Chemistry and Physics, 19, 11 587–11 612, doi: 10.5194/acp-19-11587-2019, URL https://www.atmos-chem-phys.net/19/11587/2019/ (2019)
  • Yan, Y., Lin, J., Pozzer, A., Kong, S., & Lelieveld, J.: Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe, Atmospheric Environment, 213, 25 – 36, doi: https://doi.org/10.1016/j.atmosenv.2019.05.067, URL http://www.sciencedirect.com/science/article/pii/S1352231019303723 (2019)
  • Chrysanthou, A., Maycock, A. C., Chipperfield, M. P., Dhomse, S., Garny, H., Kinnison, D., Akiyoshi, H., Deushi, M., Garcia, R. R., Jöckel, P., Kirner, O., Pitari, G., Plummer, D. A., Revell, L., Rozanov, E., Stenke, A., Tanaka, T. Y., Visioni, D., & Yamashita, Y.: The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models, Atmospheric Chemistry and Physics, 19, 11 559–11 586, doi: 10.5194/acp-19-11559-2019, URL https://www.atmos-chem-phys.net/19/11559/2019/ (2019)
  • Dacie, S., Kluft, L., Schmidt, H., Stevens, B., Buehler, S. A., Nowack, P. J., Dietmüller, S., Abraham, N. L., & Birner, T.: A 1D RCE Study of Factors Affecting the Tropical Tropopause Layer and Surface Climate, Journal of Climate, 32, 6769–6782, doi: 10.1175/JCLI-D-18-0778.1, URL https://doi.org/10.1175/JCLI-D-18-0778.1 (2019)
  • van Manen, J. & Grewe, V.: Algorithmic climate change functions for the use in eco-efficient flight planning, Transportation Research Part D: Transport and Environment, 67, 388 – 405, doi: https://doi.org/10.1016/j.trd.2018.12.016, URL http://www.sciencedirect.com/science/article/pii/S1361920917309781 (2019)
  • Octaviani, M., Tost, H., & Lammel, G.: Global simulation of semivolatile organic compounds – development and evaluation of the MESSy submodel SVOC (v1.0), Geoscientific Model Development, 12, 3585–3607, doi: 10.5194/gmd-12-3585-2019, URL https://www.geosci-model-dev.net/12/3585/2019/ (2019)
  • Lamy, K., Portafaix, T., Josse, B., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Revell, L., Akiyoshi, H., Bekki, S., Hegglin, M. I., Jöckel, P., Kirner, O., Liley, B., Marecal, V., Morgenstern, O., Stenke, A., Zeng, G., Abraham, N. L., Archibald, A. T., Butchart, N., Chipperfield, M. P., Di Genova, G., Deushi, M., Dhomse, S. S., Hu, R.-M., Kinnison, D., Kotkamp, M., McKenzie, R., Michou, M., O’Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E., Saint-Martin, D., Sudo, K., Tanaka, T. Y., Visioni, D., & Yoshida, K.: Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmospheric Chemistry and Physics, 19, 10 087–10 110, doi: 10.5194/acp-19-10087-2019, URL https://www.atmos-chem-phys.net/19/10087/2019/ (2019)
  • Harari, O., Garfinkel, C. I., Ziskin Ziv, S., Morgenstern, O., Zeng, G., Tilmes, S., Kinnison, D., Deushi, M., Jöckel, P., Pozzer, A., O’Connor, F. M., & Davis, S.: Influence of Arctic stratospheric ozone on surface climate in CCMI models, Atmospheric Chemistry and Physics, 19, 9253–9268, doi: 10.5194/acp-19-9253-2019, URL https://www.atmos-chem-phys.net/19/9253/2019/ (2019)
  • Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G., Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije, T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., & Yu, F.: Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmospheric Chemistry and Physics, 19, 8591–8617, doi: 10.5194/acp-19-8591-2019, URL https://www.atmos-chem-phys.net/19/8591/2019/ (2019)
  • Johansson, S., Santee, M. L., Grooß, J.-U., Höpfner, M., Braun, M., Friedl-Vallon, F., Khosrawi, F., Kirner, O., Kretschmer, E., Oelhaf, H., Orphal, J., Sinnhuber, B.-M., Tritscher, I., Ungermann, J., Walker, K. A., & Woiwode, W.: Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations, Atmospheric Chemistry and Physics, 19, 8311–8338, doi: 10.5194/acp-19-8311-2019, URL https://www.atmos-chem-phys.net/19/8311/2019/ (2019)
  • Polvani, L. M., Wang, L., Abalos, M., Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Dhomse, S. S., Jöckel, P., Kinnison, D., Michou, M., Morgenstern, O., Oman, L. D., Plummer, D. A., & Stone, K. A.: Large Impacts, Past and Future, of Ozone-Depleting Substances on Brewer-Dobson Circulation Trends: A Multimodel Assessment, Journal of Geophysical Research: Atmospheres, 0, doi: 10.1029/2018JD029516, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029516 (2019)
  • Šácha, P., Eichinger, R., Garny, H., Pišoft, P., Dietmüller, S., de la Torre, L., Plummer, D. A., Jöckel, P., Morgenstern, O., Zeng, G., Butchart, N., & Añel, J. A.: Extratropical age of air trends and causative factors in climate projection simulations, Atmospheric Chemistry and Physics, 19, 7627–7647, doi: 10.5194/acp-19-7627-2019, URL https://www.atmos-chem-phys.net/19/7627/2019/ (2019)
  • Klingmüller, K., Lelieveld, J., Karydis, V. A., & Stenchikov, G. L.: Direct radiative effect of dust–pollution interactions, Atmospheric Chemistry and Physics, 19, 7397–7408, doi: 10.5194/acp-19-7397-2019, URL https://www.atmos-chem-phys.net/19/7397/2019/ (2019)
  • Bourtsoukidis, E., Ernle, L., Crowley, J. N., Lelieveld, J., Paris, J.-D., Pozzer, A., Walter, D., & Williams, J.: Non-methane hydrocarbon (C2C8) sources and sinks around the Arabian Peninsula, Atmospheric Chemistry and Physics, 19, 7209–7232, doi: 10.5194/acp-19-7209-2019, URL https://www.atmos-chem-phys.net/19/7209/2019/ (2019)
  • Winterstein, F., Tanalski, F., Jöckel, P., Dameris, M., & Ponater, M.: Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections, Atmospheric Chemistry and Physics, 19, 7151–7163, doi: 10.5194/acp-19-7151-2019, URL https://www.atmos-chem-phys.net/19/7151/2019/ (2019)
  • Brinkop, S. & Jöckel, P.: ATTILA 4.0: Lagrangian advective and convective transport of passive tracers within the ECHAM5/MESSy (2.53.0) chemistry–climate model, Geoscientific Model Development, 12, 1991–2008, doi: 10.5194/gmd-12-1991-2019, URL https://www.geosci-model-dev.net/12/1991/2019/ (2019)
  • Gillett, Z. E., Arblaster, J. M., Dittus, A. J., Deushi, M., Jöckel, P., Kinnison, D. E., Morgenstern, O., Plummer, D. A., Revell, L. E., Rozanov, E., Schofield, R., Stenke, A., Stone, K. A., & Tilmes, S.: Evaluating the Relationship between Interannual Variations in the Antarctic Ozone Hole and Southern Hemisphere Surface Climate in ChemistryClimate Models, Journal of Climate, 32, 3131–3151, doi: 10.1175/JCLI-D-18-0273.1, URL https://doi.org/10.1175/JCLI-D-18-0273.1 (2019)
  • Misios, S., Gray, L. J., Knudsen, M. F., Karoff, C., Schmidt, H., & Haigh, J. D.: Slowdown of the Walker circulation at solar cycle maximum, Proceedings of the National Academy of Sciences, 116, 7186–7191, doi: 10.1073/pnas.1815060116, URL https://www.pnas.org/content/116/15/7186 (2019)
  • Hauck, M., Fritsch, F., Garny, H., & Engel, A.: Deriving stratospheric age of air spectra using an idealized set of chemically active trace gases, Atmospheric Chemistry and Physics, 19, 5269–5291, doi: 10.5194/acp-19-5269-2019, URL https://www.atmos-chem-phys.net/19/5269/2019/ (2019)
  • Yang, H., Waugh, D. W., Orbe, C., Zeng, G., Morgenstern, O., Kinnison, D. E., Lamarque, J.-F., Tilmes, S., Plummer, D. A., Jöckel, P., Strahan, S. E., Stone, K. A., & Schofield, R.: Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmospheric Chemistry and Physics, 19, 5511–5528, doi: 10.5194/acp-19-5511-2019, URL https://www.atmos-chem-phys.net/19/5511/2019/ (2019b)
  • Franco, B., Clarisse, L., Stavrakou, T., Müller, J.-F., Pozzer, A., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, P.-F.: Acetone Atmospheric Distribution Retrieved From Space, Geophysical Research Letters, 46, 2884–2893, doi: 10.1029/2019GL082052, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL082052 (2019)
  • Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz, M. G., Taraborrelli, D., & Tauer, S.: The community atmospheric chemistry box model CAABA/MECCA-4.0, Geoscientific Model Development, 12, 1365–1385, doi: 10.5194/gmd-12-1365-2019, URL https://www.geosci-model-dev.net/12/1365/2019/ (2019)
  • Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., & Münzel, T.: Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions, doi: 10.1093/eurheartj/ehz135, URL https://doi.org/10.1093/eurheartj/ehz135 (2019b)
  • Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., & Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission removal on public health and climate, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1819989116, URL https://www.pnas.org/content/early/2019/03/19/1819989116 (2019a)
  • Williams, R. S., Hegglin, M. I., Kerridge, B. J., Jöckel, P., Latter, B. G., & Plummer, D. A.: Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes, Atmospheric Chemistry and Physics, 19, 3589–3620, doi: 10.5194/acp-19-3589-2019, URL https://www.atmos-chem-phys.net/19/3589/2019/ (2019)
  • Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P., & Deushi, M.: Ozone-climate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., pp. –, doi: 10.1039/C8PP90059K, URL http://dx.doi.org/10.1039/C8PP90059K (2019)
  • Tomsche, L., Pozzer, A., Ojha, N., Parchatka, U., Lelieveld, J., & Fischer, H.: Upper tropospheric CH4 and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission, Atmospheric Chemistry and Physics, 19, 1915–1939, doi: 10.5194/acp-19-1915-2019, URL https://www.atmos-chem-phys.net/19/1915/2019/ (2019)
  • Kaiser, J. C., Hendricks, J., Righi, M., Jöckel, P., Tost, H., Kandler, K., Weinzierl, B., Sauer, D., Heimerl, K., Schwarz, J. P., Perring, A. E., & Popp, T.: Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation, Geoscientific Model Development, 12, 541–579, doi: 10.5194/gmd-12-541-2019, URL https://www.geosci-model-dev.net/12/541/2019/ (2019)
  • Eichinger, R., Dietmüller, S., Garny, H., Šácha, P., Birner, T., Bönisch, H., Pitari, G., Visioni, D., Stenke, A., Rozanov, E., Revell, L., Plummer, D. A., Jöckel, P., Oman, L., Deushi, M., Kinnison, D. E., Garcia, R., Morgenstern, O., Zeng, G., Stone, K. A., & Schofield, R.: The influence of mixing on the stratospheric age of air changes in the 21st century, Atmospheric Chemistry and Physics, 19, 921–940, doi: 10.5194/acp-19-921-2019, URL https://www.atmos-chem-phys.net/19/921/2019/ (2019)
  • Yang, H., Waugh, D. W., Orbe, C., Patra, P. K., Jöckel, P., Lamarque, J.-F., Tilmes, S., Kinnison, D., Elkins, J. W., & Dlugokencky, E. J.: Evaluating Simulations of Interhemispheric Transport: Interhemispheric Exchange Time versus SF6 Age, Geophysical Research Letters, 46, doi: 10.1029/2018GL080960, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL080960 (2019a)
  • Bacer, S.: Global numerical simulations of atmospheric ice crystals, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, URL http://doi.org/10.25358/openscience-1977 (2019)
  • Liu, N.: Seasonal-spatial variations of surface ozone over China and the influence of long range transport, Ph.D. thesis, Nanjing University of Information Science & Technology, Nanjing, China (2019)
  • Kirsch, C.: Untersuchung zur Kopplung von Stratosphäre und Troposphäre durch Strahlungsflussänderungen mit dem Klima-Chemie-Modell EMAC, Ph.D. thesis, Freie Universität Berlin, URL http://dx.doi.org/10.17169/refubium-25345 (2019)
  • Schneider, S.: Simulation of a Permian climate and analysis of atmospheric transport and mixing processes, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, URL http://doi.org/10.25358/openscience-3033 (2019)

2018

  • Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G., Pöschl, U., Cheng, A.: Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs, Science Advances, 4, 3, https://doi.org/10.1126/sciadv.aap7314 (2018)
  • Hendricks, J., Righi, M., Dahlmann, K., Gottschaldt, K.-D., Grewe, V., Ponater, M., Sausen, R., Heinrichs, D., Winkler, C., Wolfermann, A., Kampffmeyer, T., Friedrich, R., Klötzke, M., & Kugler, U.: Quantifying the climate impact of emissions from land-based transport in Germany, Transportation Research Part D: Transport and Environment, 65, 825 – 845, doi: https://doi.org/10.1016/j.trd.2017.06.003, URL http://www.sciencedirect.com/science/article/pii/S1361920916303820 (2018)
  • Franco, B., Clarisse, L., Stavrakou, T., Müller, J.-F., VanDamme, M., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Taraborrelli, D., Clerbaux, C., & Coheur, P.-F.: A General Framework for Global Retrievals of Trace Gases From IASI: Application to Methanol, Formic Acid, and PAN, Journal of Geophysical Research: Atmospheres, 123, doi: 10.1029/2018JD029633, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029633 (2018)
  • Ehrhart, S., Dunne, E. M., Manninen, H. E., Nieminen, T., Lelieveld, J., & Pozzer, A.: Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0, Geoscientific Model Development, 11, 4987–5001, doi: 10.5194/gmd-11-4987-2018, URL https://www.geosci-model-dev.net/11/4987/2018/ (2018)
  • Metzger, S., Abdelkader, M., Steil, B., & Klingmüller, K.: Aerosol water parameterization: long-term evaluation and importance for climate studies, Atmospheric Chemistry and Physics, 18, 16 747–16 774, doi: 10.5194/acp-18-16747-2018, URL https://www.atmos-chem-phys.net/18/16747/2018/ (2018)
  • Timofeyev, Y. M., Smyshlyaev, S. P., Virolainen, Y. A., Garkusha, A. S., Polyakov, A. V., Motsakov, M. A., & Kirner, O.: Case study of ozone anomalies over northern Russia in the 2015/2016 winter: measurements and numerical modelling, Annales Geophysicae, 36, 1495–1505, doi: 10.5194/angeo-36-1495-2018, URL https://www.ann-geophys.net/36/1495/2018/ (2018)
  • Revell, L. E., Stenke, A., Tummon, F., Feinberg, A., Rozanov, E., Peter, T., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Butchart, N., Deushi, M., Jöckel, P., Kinnison, D., Michou, M., Morgenstern, O., O’Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Schofield, R., Stone, K., Tilmes, S., Visioni, D., Yamashita, Y., & Zeng, G.: Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmospheric Chemistry and Physics, 18, 16 155–16 172, doi: 10.5194/acp-18-16155-2018, URL https://www.atmos-chem-phys.net/18/16155/2018/ (2018)
  • Rieger, V. S.: A new method to assess the climate effect of mitigation strategies for road traffic: The fast chemistry-climate response model TransClim, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, doi: 10.4233/uuid:cc96a7c7-1ec7-449a-84b0-2f9a342a5be5, URL https://doi.org/10.4233/uuid:cc96a7c7-1ec7-449a-84b0-2f9a342a5be5 (2018)
  • Bacer, S., Sullivan, S. C., Karydis, V. A., Barahona, D., Krämer, M., Nenes, A., Tost, H., Tsimpidi, A. P., Lelieveld, J., & Pozzer, A.: Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53), Geoscientific Model Development, 11, 4021–4041, doi: 10.5194/gmd-11-4021-2018, URL https://www.geosci-model-dev.net/11/4021/2018/ (2018)
  • Yin, F., Grewe, V., Frömming, C., & Yamashita, H.: Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights, Transportation Research Part D: Transport and Environment, 65, 466 – 484, doi: https://doi.org/10.1016/j.trd.2018.09.017, URL http://www.sciencedirect.com/science/article/pii/S1361920917309987 (2018)
  • Maycock, A. C., Randel, W. J., Steiner, A. K., Karpechko, A. Y., Christy, J., Saunders, R., Thompson, D. W. J., Zou, C.-Z., Chrysanthou, A., Luke Abraham, N., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M., Dameris, M., Deushi, M., Dhomse, S., Di Genova, G., Jöckel, P., Kinnison, D. E., Kirner, O., Ladstädter, F., Michou, M., Morgenstern, O., O’Connor, F., Oman, L., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Stenke, A., Visioni, D., Yamashita, Y., & Zeng, G.: Revisiting the Mystery of Recent Stratospheric Temperature Trends, Geophysical Research Letters, 0, doi: 10.1029/2018GL078035, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078035 (2018b)
  • Frank, F. I.: Atmospheric methane and its isotopic composition in a changing climate, Ph.D. thesis, Ludwig-Maximilians-Universität, München, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-225789 (2018)
  • Brühl, C., Schallock, J., Klingmüller, K., Robert, C., Bingen, C., Clarisse, L., Heckel, A., North, P., & Rieger, L.: Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data, Atmospheric Chemistry and Physics, 18, 12 845–12 857, doi: 10.5194/acp-18-12845-2018, URL https://www.atmos-chem-phys.net/18/12845/2018/ (2018)
  • Krol, M., de Bruine, M., Killaars, L., Ouwersloot, H., Pozzer, A., Yin, Y., Chevallier, F., Bousquet, P., Patra, P., Belikov, D., Maksyutov, S., Dhomse, S., Feng, W., & Chipperfield, M. P.: Age of air as a diagnostic for transport timescales in global models, Geoscientific Model Development, 11, 3109–3130, doi: 10.5194/gmd-11-3109-2018, URL https://www.geosci-model-dev.net/11/3109/2018/ (2018)
  • Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N., & Lelieveld, J.: ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model, Geoscientific Model Development, 11, 3369–3389, doi: 10.5194/gmd-11-3369-2018, URL https://www.geosci-model-dev.net/11/3369/2018/ (2018)
  • Maycock, A. C., Matthes, K., Tegtmeier, S., Schmidt, H., Thiéblemont, R., Hood, L., Akiyoshi, H., Bekki, S., Deushi, M., Jöckel, P., Kirner, O., Kunze, M., Marchand, M., Marsh, D. R., Michou, M., Plummer, D., Revell, L. E., Rozanov, E., Stenke, A., Yamashita, Y., & Yoshida, K.: The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models, Atmospheric Chemistry and Physics, 18, 11 323–11 343, doi: 10.5194/acp-18-11323-2018, URL https://www.atmos-chem-phys.net/18/11323/2018/ (2018a)
  • Ayarzagüena, B., Polvani, L. M., Langematz, U., Akiyoshi, H., Bekki, S., Butchart, N., Dameris, M., Deushi, M., Hardiman, S. C., Jöckel, P., Klekociuk, A., Marchand, M., Michou, M., Morgenstern, O., O’Connor, F. M., Oman, L. D., Plummer, D. A., Revell, L., Rozanov, E., Saint-Martin, D., Scinocca, J., Stenke, A., Stone, K., Yamashita, Y., Yoshida, K., & Zeng, G.: No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmospheric Chemistry and Physics, 18, 11 277–11 287, doi: 10.5194/acp-18-11277-2018, URL https://www.atmos-chem-phys.net/18/11277/2018/ (2018)
  • Frank, F., Jöckel, P., Gromov, S., & Dameris, M.: Investigating the yield of H2and H2 from methane oxidation in the stratosphere, Atmospheric Chemistry and Physics, 18, 9955–9973, doi: 10.5194/acp-18-9955-2018, URL https://www.atmos-chem-phys.net/18/9955/2018/ (2018)
  • Gromov, S., Brenninkmeijer, C. A. M., & Jöckel, P.: A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane, Atmospheric Chemistry and Physics, 18, 9831–9843, doi: 10.5194/acp-18-9831-2018, URL https://www.atmos-chem-phys.net/18/9831/2018/ (2018)
  • Khosrawi, F., Kirner, O., Stiller, G., Höpfner, M., Santee, M. L., Kellmann, S., & Braesicke, P.: Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations, Atmospheric Chemistry and Physics, 18, 8873–8892, doi: 10.5194/acp-18-8873-2018, URL https://www.atmos-chem-phys.net/18/8873/2018/ (2018)
  • Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O’Connor, F. M., Oman, L., Pitari, G., Plummer, D. A., Pyle, J. A., Revell, L. E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, D., Yamashita, Y., & Zeng, G.: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmospheric Chemistry and Physics, 18, 8409–8438, doi: 10.5194/acp-18-8409-2018, URL https://www.atmos-chem-phys.net/18/8409/2018/ (2018)
  • Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H., Harder, H., Hofzumahaus, A., Holland, F., Marno, D., Neumaier, M., Pozzer, A., Schlager, H., Williams, J., Zahn, A., & Ziereis, H.: The South Asian monsoon—Pollution pump and purifier, Science, doi: 10.1126/science.aar2501, URL http://science.sciencemag.org/content/early/2018/06/13/science.aar2501 (2018)
  • Bourtsoukidis, E., Behrendt, T., Yañez, Hellén, H., Diamantopoulos, E., Catão, E., Ashworth, K., Pozzer, A., Quesada, C., Martins, D., Sá, M., Araujo, A., Brito, J., Artaxo, P., Kesselmeier, J., Lelieveld, J., & Williams, J.: Strong sesquiterpene emissions from Amazonian soils, Nature Communications, 9, 2226, doi: 10.1038/s41467-018-04658-y, URL https://doi.org/10.1038/s41467-018-04658-y (2018)
  • Lossow, S., Hurst, D. F., Rosenlof, K. H., Stiller, G. P., von Clarmann, T., Brinkop, S., Dameris, M., Jöckel, P., Kinnison, D. E., Plieninger, J., Plummer, D. A., Ploeger, F., Read, W. G., Remsberg, E. E., Russell, J. M., & Tao, M.: Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies, Atmospheric Chemistry and Physics, 18, 8331–8351, doi: 10.5194/acp-18-8331-2018, URL https://www.atmos-chem-phys.net/18/8331/2018/ (2018)
  • Rieger, V. S., Mertens, M., & Grewe, V.: An advanced method of contributing emissions to short-lived chemical species (OH and HO2): the TAGGING 1.1 submodel based on the Modular Earth Submodel System (MESSy 2.53), Geoscientific Model Development, 11, 2049–2066, doi: 10.5194/gmd-11-2049-2018, URL https://www.geosci-model-dev.net/11/2049/2018/ (2018)
  • Meul, S., Langematz, U., Kröger, P., Oberländer-Hayn, S., & Jöckel, P.: Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery, Atmospheric Chemistry and Physics, 18, 7721–7738, doi: 10.5194/acp-18-7721-2018, URL https://www.atmos-chem-phys.net/18/7721/2018/ (2018)
  • Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P., Baidar, S., Dix, B., Koenig, T. K., Volkamer, R., Chen, D., Huey, L. G., Tanner, D. J., Cuevas, C. A., Fernandez, R. P., Kinnison, D. E., Lamarque, J., SaizLopez, A., Atlas, E. L., Hall, S. R., Navarro, M. A., Pan, L. L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A. J., Akiyoshi, H., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jöckel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., SaintMartin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, D., Yamashita, Y., & Zeng, G.: Stratospheric Injection of Brominated Very ShortLived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models, Journal of Geophysical Research: Atmospheres, 0, doi: 10.1029/2017JD027978, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JD027978 (2018)
  • Orbe, C., Yang, H., Waugh, D. W., Zeng, G., Morgenstern, O., Kinnison, D. E., Lamarque, J.-F., Tilmes, S., Plummer, D. A., Scinocca, J. F., Josse, B., Marecal, V., Jöckel, P., Oman, L. D., Strahan, S. E., Deushi, M., Tanaka, T. Y., Yoshida, K., Akiyoshi, H., Yamashita, Y., Stenke, A., Revell, L., Sukhodolov, T., Rozanov, E., Pitari, G., Visioni, D., Stone, K. A., Schofield, R., & Banerjee, A.: Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations, Atmospheric Chemistry and Physics, 18, 7217–7235, doi: 10.5194/acp-18-7217-2018, URL https://www.atmos-chem-phys.net/18/7217/2018/ (2018)
  • Dietmüller, S., Eichinger, R., Garny, H., Birner, T., Boenisch, H., Pitari, G., Mancini, E., Visioni, D., Stenke, A., Revell, L., Rozanov, E., Plummer, D. A., Scinocca, J., Jöckel, P., Oman, L., Deushi, M., Kiyotaka, S., Kinnison, D. E., Garcia, R., Morgenstern, O., Zeng, G., Stone, K. A., & Schofield, R.: Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmospheric Chemistry and Physics, 18, 6699–6720, doi: 10.5194/acp-18-6699-2018, URL https://www.atmos-chem-phys.net/18/6699/2018/ (2018)
  • Virolainen, Y. A., Timofeev, Y. M., Berezin, I. A., Smyshlyaev, S. P., Motsakov, M. A., & Kirner, O.: Validation of Atmospheric Numerical Models Based on Satellite Measurements of Ozone Columns, Russian Meteorology and Hydrology, 43, 161–167, doi: 10.3103/S1068373918030044, URL https://doi.org/10.3103/S1068373918030044 (2018)
  • Gottschaldt, K.-D., Schlager, H., Baumann, R., Cai, D. S., Eyring, V., Graf, P., Grewe, V., Jöckel, P., Jurkat-Witschas, T., Voigt, C., Zahn, A., & Ziereis, H.: Dynamics and composition of the Asian summer monsoon anticyclone, Atmospheric Chemistry and Physics, 18, 5655–5675, doi: 10.5194/acp-18-5655-2018, URL https://www.atmos-chem-phys.net/18/5655/2018/ (2018)
  • Yan, Y., Pozzer, A., Ojha, N., Lin, J., & Lelieveld, J.: Analysis of European ozone trends in the period 1995–2014, Atmospheric Chemistry and Physics, 18, 5589–5605, doi: 10.5194/acp-18-5589-2018, URL https://www.atmos-chem-phys.net/18/5589/2018/ (2018)
  • Mertens, M., Grewe, V., Rieger, V. S., & Jöckel, P.: Revisiting the contribution of land transport and shipping emissions to tropospheric ozone, Atmospheric Chemistry and Physics, 18, 5567–5588, doi: 10.5194/acp-18-5567-2018, URL https://www.atmos-chem-phys.net/18/5567/2018/ (2018)
  • Son, S.-W., Han, B.-R., Garfinkel, C., Kim, S.-Y., Park, R., Abraham, N. L., Akiyoshi, H., Archibald, A., Butchart, N., Chipperfield, M., Dameris, M., Deushi, M., Dhomse, S. S., Hardiman, S., Jöckel, P., Kinnison, D., Michou, M., Morgenstern, O., O’Connor, F. M., Oman, L. D., Plummer, D. A., Pozzer, A., Revell, L. E., Rozanov, E., Stenke, A., Stone, K., Tilmes, S., Yamashita, Y., & Zeng, G.: Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environmental Research Letters, URL https://doi.org/10.1088/1748-9326/aabf21 (2018)
  • Falk, S. & Sinnhuber, B.-M.: Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm, Geoscientific Model Development, 11, 1115–1131, doi: 10.5194/gmd-11-1115-2018, URL https://www.geosci-model-dev.net/11/1115/2018/ (2018)
  • Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., Stockdale, T. N., Andrews, M., Bellprat, O., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Dobrynin, M., Garcia, R. R., Garcia-Serrano, J., Gray, L. J., Holt, L., Kerzenmacher, T., Naoe, H., Pohlmann, H., Richter, J. H., Scaife, A. A., Schenzinger, V., Serva, F., Versick, S., Watanabe, S., Yoshida, K., & Yukimoto, S.: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geoscientific Model Development, 11, 1009–1032, doi: 10.5194/gmd-11-1009-2018, URL https://www.geosci-model-dev.net/11/1009/2018/ (2018)
  • Shved, G. M., Virolainen, Y. A., Timofeyev, Y. M., Ermolenko, S. I., Smyshlyaev, S. P., Motsakov, M. A., & Kirner, O.: Ozone Temporal Variability in the Subarctic Region: Comparison of Satellite Measurements with Numerical Simulations, Izvestiya, Atmospheric and Oceanic Physics, 54, 32–38, doi: 10.1134/S0001433817060111, URL https://doi.org/10.1134/S0001433817060111 (2018)
  • Kerkweg, A., Hofmann, C., Jöckel, P., Mertens, M., & Pante, G.: The on-line coupled atmospheric chemistry model system MECO(n) – Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0), Geoscientific Model Development, 11, 1059–1076, doi: 10.5194/gmd-11-1059-2018, URL https://www.geosci-model-dev.net/11/1059/2018/ (2018)
  • Klingmüller, K., Metzger, S., Abdelkader, M., Karydis, V. A., Stenchikov, G. L., Pozzer, A., & Lelieveld, J.: Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch), Geoscientific Model Development, 11, 989–1008, doi: 10.5194/gmd-11-989-2018, URL https://www.geosci-model-dev.net/11/989/2018/ (2018)
  • Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., & Crowley, J. N.: Temperature-(208–318K) and pressure-(18–696Torr) dependent rate coefficients for the reaction between OH and HNO3, Atmospheric Chemistry and Physics, 18, 2381–2394, doi: 10.5194/acp-18-2381-2018, URL https://www.atmos-chem-phys.net/18/2381/2018/ (2018)
  • Sinnhuber, M., Berger, U., Funke, B., Nieder, H., Reddmann, T., Stiller, G., Versick, S., von Clarmann, T., & Wissing, J. M.: NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010, Atmospheric Chemistry and Physics, 18, 1115–1147, doi: 10.5194/acp-18-1115-2018, URL https://www.atmos-chem-phys.net/18/1115/2018/ (2018)
  • Engel, A., Bönisch, H., Ostermöller, J., Chipperfield, M. P., Dhomse, S., & Jöckel, P.: A refined method for calculating equivalent effective stratospheric chlorine, Atmospheric Chemistry and Physics, 18, 601–619, doi: 10.5194/acp-18-601-2018, URL https://www.atmos-chem-phys.net/18/601/2018/ (2018)
  • Zhang, J., Tian, W., Xie, F., Chipperfield, M. P., Feng, W., Son, S., Abraham, N., Archibald, A. T., Bekki, S., Butchart, N., Deushi, M., Dhomse, S., Han, Y., Jöckel, P., Kinnison, D., Kirner, O., Michou, M., Morgenstern, O., O’Connor, F. M., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Visioni, D., Wang, W., & Zeng, G.: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi: 10.1038/s41467-017-02565-2, URL https://doi.org/10.1038/s41467-017-02565-2 (2018)
  • Giannadaki, D., Giannakis, E., Pozzer, A., & Lelieveld, J.: Estimating health and economic benefits of reductions in air pollution from agriculture, Science of The Total Environment, 622623, 1304 – 1316, doi: https://doi.org/10.1016/j.scitotenv.2017.12.064, URL https://www.sciencedirect.com/science/article/pii/S0048969717334836 (2018)
  • Rybka, H.: Einfluss von aufgelösten subgridskaligen Prozessen: Implementierung und Analyse einer Superparametrisierung im Klimamodell EMAC, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, URL http://doi.org/10.25358/openscience-3860 (2018)

2017

  • Virolainen, Y. A., Timofeyev, Y. M., Smyshlyaev, S. P., Motsakov, M. A., & Kirner, O.: Study of Ozone Layer Variability near St. Petersburg on the Basis of SBUV Satellite Measurements and Numerical Simulation (2000–2014), Izvestiya, Atmospheric and Oceanic Physics, 53, 911–917, doi: 10.1134/S0001433817090328, URL https://doi.org/10.1134/S0001433817090328 (2017)
  • Wetzel, G., Oelhaf, H., Höpfner, M., Friedl-Vallon, F., Ebersoldt, A., Gulde, T., Kazarski, S., Kirner, O., Kleinert, A., Maucher, G., Nordmeyer, H., Orphal, J., Ruhnke, R., & Sinnhuber, B.-M.: Diurnal variations of BrONO2 observed by MIPAS-B at midlatitudes and in the Arctic, Atmospheric Chemistry and Physics, 17, 14 631–14 643, doi: 10.5194/acp-17-14631-2017, URL https://www.atmos-chem-phys.net/17/14631/2017/ (2017)
  • Vereecken, L., Novelli, A., & Taraborrelli, D.: Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates, Phys. Chem. Chem. Phys., pp. –, doi: 10.1039/C7CP05541B, URL http://dx.doi.org/10.1039/C7CP05541B (2017)
  • Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., & Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmospheric Chemistry and Physics, 17, 12 911–12 940, doi: 10.5194/acp-17-12911-2017, URL https://www.atmos-chem-phys.net/17/12911/2017/ (2017)
  • Hüneke, T., Aderhold, O.-A., Bounin, J., Dorf, M., Gentry, E., Grossmann, K., Grooß, J.-U., Hoor, P., Jöckel, P., Kenntner, M., Knapp, M., Knecht, M., Lörks, D., Ludmann, S., Matthes, S., Raecke, R., Reichert, M., Weimar, J., Werner, B., Zahn, A., Ziereis, H., & Pfeilsticker, K.: The novel HALO mini-DOAS instrument: inferring trace gas concentrations from airborne UV/visible limb spectroscopy under all skies using the scaling method, Atmospheric Measurement Techniques, 10, 4209–4234, doi: 10.5194/amt-10-4209-2017, URL https://www.atmos-meas-tech.net/10/4209/2017/ (2017)
  • Khosrawi, F., Kirner, O., Sinnhuber, B.-M., Johansson, S., Höpfner, M., Santee, M. L., Froidevaux, L., Ungermann, J., Ruhnke, R., Woiwode, W., Oelhaf, H., & Braesicke, P.: Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter, Atmospheric Chemistry and Physics, 17, 12 893–12 910, doi: 10.5194/acp-17-12893-2017, URL https://www.atmos-chem-phys.net/17/12893/2017/ (2017)
  • Pozzer, A., Tsimpidi, A. P., Karydis, V. A., de Meij, A., & Lelieveld, J.: Impact of agricultural emission reductions on fine-particulate matter and public health, Atmospheric Chemistry and Physics, 17, 12 813–12 826, doi: 10.5194/acp-17-12813-2017, URL https://www.atmos-chem-phys.net/17/12813/2017/ (2017)
  • Bozem, H., Pozzer, A., Harder, H., Martinez, M., Williams, J., Lelieveld, J., & Fischer, H.: The influence of deep convection on HCHO and H2O2 in the upper troposphere over Europe, Atmospheric Chemistry and Physics, 17, 11 835–11 848, doi: 10.5194/acp-17-11835-2017, URL https://www.atmos-chem-phys.net/17/11835/2017/ (2017)
  • Alvanos, M. & Christoudias, T.: GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52), Geoscientific Model Development, 10, 3679–3693, doi: 10.5194/gmd-10-3679-2017, URL https://www.geosci-model-dev.net/10/3679/2017/ (2017)
  • Anderson, D. C., Nicely, J. M., Wolfe, G. M., Hanisco, T. F., Salawitch, R. J., Canty, T. P., Dickerson, R. R., Apel, E. C., Baidar, S., Bannan, T. J., Blake, N. J., Chen, D., Dix, B., Fernandez, R. P., Hall, S. R., Hornbrook, R. S., Gregory Huey, L., Josse, B., Jöckel, P., Kinnison, D. E., Koenig, T. K., Le Breton, M., Marécal, V., Morgenstern, O., Oman, L. D., Pan, L. L., Percival, C., Plummer, D., Revell, L. E., Rozanov, E., Saiz-Lopez, A., Stenke, A., Sudo, K., Tilmes, S., Ullmann, K., Volkamer, R., Weinheimer, A. J., & Zeng, G.: Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAM-Chem and the CCMI Models, Journal of Geophysical Research: Atmospheres, pp. n/a–n/a, doi: 10.1002/2016JD026121, URL http://dx.doi.org/10.1002/2016JD026121, 2016JD026121 (2017)
  • Lossow, S., Garny, H., & Jöckel, P.: An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics, Atmospheric Chemistry and Physics, 17, 11 521–11 539, doi: 10.5194/acp-17-11521-2017, URL https://www.atmos-chem-phys.net/17/11521/2017/ (2017)
  • Rieger, V. S., Dietmüller, S., & Ponater, M.: Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?, Climate Dynamics, 49, 2831–2844, doi: 10.1007/s00382-016-3476-x, URL https://doi.org/10.1007/s00382-016-3476-x (2017)
  • Falk, S., Sinnhuber, B.-M., Krysztofiak, G., Jöckel, P., Graf, P., & Lennartz, S. T.: Brominated VSLS and their influence on ozone under a changing climate, Atmospheric Chemistry and Physics, 17, 11 313–11 329, doi: 10.5194/acp-17-11313-2017, URL https://www.atmos-chem-phys.net/17/11313/2017/ (2017)
  • Derstroff, B., Hüser, I., Bourtsoukidis, E., Crowley, J. N., Fischer, H., Gromov, S., Harder, H., Janssen, R. H. H., Kesselmeier, J., Lelieveld, J., Mallik, C., Martinez, M., Novelli, A., Parchatka, U., Phillips, G. J., Sander, R., Sauvage, C., Schuladen, J., Stönner, C., Tomsche, L., & Williams, J.: Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean, Atmospheric Chemistry and Physics, 17, 9547–9566, doi: 10.5194/acp-17-9547-2017, URL https://www.atmos-chem-phys.net/17/9547/2017/ (2017)
  • Keßel, S., Cabrera-Perez, D., Horowitz, A., Veres, P. R., Sander, R., Taraborrelli, D., Tucceri, M., Crowley, J. N., Pozzer, A., Stönner, C., Vereecken, L., Lelieveld, J., & Williams, J.: Atmospheric chemistry, sources and sinks of carbon suboxide, C3O2, Atmospheric Chemistry and Physics, 17, 8789–8804, doi: 10.5194/acp-17-8789-2017, URL https://www.atmos-chem-phys.net/17/8789/2017/ (2017)
  • Gromov, S., Brenninkmeijer, C. A. M., & Jöckel, P.: Uncertainties of fluxes and 1312ratios of atmospheric reactive-gas emissions, Atmospheric Chemistry and Physics, 17, 8525–8552, doi: 10.5194/acp-17-8525-2017, URL https://www.atmos-chem-phys.net/17/8525/2017/ (2017)
  • Spiegl, T. C.: Die Auswirkungen eines potentiellen Grand Solar Minimum auf das Klimasystem vor dem Hintergrund des anthropogenen Klimawandels, Ph.D. thesis, Freie Universität Berlin, URL http://dx.doi.org/10.17169/refubium-13486 (2017)
  • Cabrera Perez, C. D.: Simple monocyclic aromatic compounds from a global scale perspective, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, doi: urn:nbn:de:hebis:77-diss-1000013996, URL https://publications.UB.Uni-Mainz.DE/theses/frontdoor.php?source_opus=100001399 (2017)
  • Grewe, V., Dahlmann, K., Flink, J., Frömming, C., Ghosh, R., Gierens, K., Heller, R., Hendricks, J., Jöckel, P., Kaufmann, S., Kölker, K., Linke, F., Luchkova, T., Lührs, B., Van Manen, J., Matthes, S., Minikin, A., Nikla, M., Plohr, M., Righi, M., Rosanka, S., Schmitt, A., Schumann, U., Terekhov, I., Unterstrasser, S., Vázquez-Navarro, M., Voigt, C., Wicke, K., Yamashita, H., Zahn, A., & Ziereis, H.: Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project, Aerospace, 4, doi: 10.3390/aerospace4030034, URL http://www.mdpi.com/2226-4310/4/3/34 (2017a)
  • Grewe, V., Tsati, E., Mertens, M., Frömming, C., & Jöckel, P.: Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52), Geoscientific Model Development, 10, 2615–2633, doi: 10.5194/gmd-10-2615-2017, URL https://www.geosci-model-dev.net/10/2615/2017/ (2017c)
  • Miyazaki, K. & Bowman, K.: Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-based multi-constituent chemical reanalysis, Atmospheric Chemistry and Physics, 17, 8285–8312, doi: 10.5194/acp-17-8285-2017, URL https://www.atmos-chem-phys.net/17/8285/2017/ (2017)
  • Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., & Versick, S.: Solar forcing for CMIP6 (v3.2), Geoscientific Model Development, 10, 2247–2302, doi: 10.5194/gmd-10-2247-2017, URL https://www.geosci-model-dev.net/10/2247/2017/ (2017)
  • Chang, D., Lelieveld, J., Tost, H., Steil, B., Pozzer, A., & Yoon, J.: Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC, Atmospheric Environment, 162, 127 – 140, doi: https://doi.org/10.1016/j.atmosenv.2017.03.036, URL http://www.sciencedirect.com/science/article/pii/S1352231017301644 (2017)
  • Schenzinger, V., Osprey, S., Gray, L., & Butchart, N.: Defining metrics of the Quasi-Biennial Oscillation in global climate models, Geoscientific Model Development, 10, 2157–2168, doi: 10.5194/gmd-10-2157-2017, URL https://www.geosci-model-dev.net/10/2157/2017/ (2017)
  • Janssen, R. H. H., Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Lelieveld, J., Prévôt, A. S. H., Crippa, M., Ait-Helal, W., Borbon, A., Sauvage, S., & Locoge, N.: Influence of local production and vertical transport on the organic aerosol budget over Paris, Journal of Geophysical Research: Atmospheres, pp. n/a–n/a, doi: 10.1002/2016JD026402, URL http://dx.doi.org/10.1002/2016JD026402, 2016JD026402 (2017)
  • Dietmüller, S., Garny, H., Plöger, F., Jöckel, P., & Cai, D.: Effects of mixing on resolved and unresolved scales on stratospheric age of air, Atmospheric Chemistry and Physics, 17, 7703–7719, doi: 10.5194/acp-17-7703-2017, URL https://www.atmos-chem-phys.net/17/7703/2017/ (2017)
  • Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., & Lelieveld, J.: Global-scale combustion sources of organic aerosols: sensitivity to formation and removal mechanisms, Atmospheric Chemistry and Physics, 17, 7345–7364, doi: 10.5194/acp-17-7345-2017, URL http://www.atmos-chem-phys.net/17/7345/2017/ (2017)
  • Mertens, M. B.: Contribution of road traffic emissions to tropospheric ozone in Europe and Germany, Ph.D. thesis, Ludwig-Maximilians-Universität München, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-207288 (2017)
  • Graf, P.: The impact of very short-lived substances on the stratospheric chemistry and interactions with the climate, Ph.D. thesis, Ludwig-Maximilians-Universität München, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-207510 (2017)
  • Ojha, N., Pozzer, A., Akritidis, D., & Lelieveld, J.: Secondary ozone peaks in the troposphere over the Himalayas, Atmospheric Chemistry and Physics, 17, 6743–6757, doi: 10.5194/acp-17-6743-2017, URL http://www.atmos-chem-phys.net/17/6743/2017/ (2017)
  • Gottschaldt, K.-D., Schlager, H., Baumann, R., Bozem, H., Eyring, V., Hoor, P., Jöckel, P., Jurkat, T., Voigt, C., Zahn, A., & Ziereis, H.: Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations, Atmospheric Chemistry and Physics, 17, 6091–6111, doi: 10.5194/acp-17-6091-2017, URL http://www.atmos-chem-phys.net/17/6091/2017/ (2017)
  • Karydis, V. A., Tsimpidi, A. P., Bacer, S., Pozzer, A., Nenes, A., & Lelieveld, J.: Global impact of mineral dust on cloud droplet number concentration, Atmospheric Chemistry and Physics, 17, 5601–5621, doi: 10.5194/acp-17-5601-2017, URL http://www.atmos-chem-phys.net/17/5601/2017/ (2017)
  • Erguler, K., Chandra, N. L., Proestos, Y., Lelieveld, J., Christophides, G. K., & Parham, P. E.: A large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology, PLOS ONE, 12, 1–35, doi: 10.1371/journal.pone.0174293, URL https://doi.org/10.1371/journal.pone.0174293 (2017)
  • Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T., Pandis, S. N., Lelieveld, J., Koop, T., & Pöschl, U.: Global distribution of particle phase state in atmospheric secondary organic aerosols, Nature Communications, 8, 15 002, doi: Article, URL http://dx.doi.org/10.1038/ncomms15002 (2017)
  • Abdelkader, M., Metzger, S., Steil, B., Klingmüller, K., Tost, H., Pozzer, A., Stenchikov, G., Barrie, L., & Lelieveld, J.: Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes, Atmospheric Chemistry and Physics, 17, 3799–3821, doi: 10.5194/acp-17-3799-2017, URL http://www.atmos-chem-phys.net/17/3799/2017/ (2017)
  • Ostermöller, J., Bönisch, H., Jöckel, P., & Engel, A.: A new time-independent formulation of fractional release, Atmospheric Chemistry and Physics, 17, 3785–3797, doi: 10.5194/acp-17-3785-2017, URL http://www.atmos-chem-phys.net/17/3785/2017/ (2017)
  • Funke, B., Ball, W., Bender, S., Gardini, A., Harvey, V. L., Lambert, A., López-Puertas, M., Marsh, D. R., Meraner, K., Nieder, H., Päivärinta, S.-M., Pérot, K., Randall, C. E., Reddmann, T., Rozanov, E., Schmidt, H., Seppälä, A., Sinnhuber, M., Sukhodolov, T., Stiller, G. P., Tsvetkova, N. D., Verronen, P. T., Versick, S., von Clarmann, T., Walker, K. A., & Yushkov, V.: HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009, Atmospheric Chemistry and Physics, 17, 3573–3604, doi: 10.5194/acp-17-3573-2017, URL http://www.atmos-chem-phys.net/17/3573/2017/ (2017)
  • Eckstein, J., Ruhnke, R., Zahn, A., Neumaier, M., Kirner, O., & Braesicke, P.: An assessment of the climatological representativeness of IAGOS-CARIBIC trace gas measurements using EMAC model simulations, Atmospheric Chemistry and Physics, 17, 2775–2794, doi: 10.5194/acp-17-2775-2017, URL http://www.atmos-chem-phys.net/17/2775/2017/ (2017)
  • Grewe, V., Matthes, S., Frömming, C., Brinkop, S., Jöckel, P., Gierens, K., Champougny, T., Fuglestvedt, J., Haslerud, A., Irvine, E., & Shine, K.: Feasibility of climate-optimized air traffic routing for trans-Atlantic flights, Environmental Research Letters, 12, 034 003, URL http://stacks.iop.org/1748-9326/12/i=3/a=034003 (2017b)
  • Glatthor, N., Höpfner, M., Leyser, A., Stiller, G. P., von Clarmann, T., Grabowski, U., Kellmann, S., Linden, A., Sinnhuber, B.-M., Krysztofiak, G., & Walker, K. A.: Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002–2012, Atmospheric Chemistry and Physics, 17, 2631–2652, doi: 10.5194/acp-17-2631-2017, URL http://www.atmos-chem-phys.net/17/2631/2017/ (2017)
  • Giannadaki, D., Lelieveld, J., & Pozzer, A.: The Impact of Fine Particulate Outdoor Air Pollution to Premature Mortality, pp. 1021–1026, Springer International Publishing, Cham, doi: 10.1007/978-3-319-35095-0_146, URL http://dx.doi.org/10.1007/978-3-319-35095-0_146 (2017)
  • Morgenstern, O., Hegglin, M. I., Rozanov, E., O’Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., & Zeng, G.: Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geoscientific Model Development, 10, 639–671, doi: 10.5194/gmd-10-639-2017, URL http://www.geosci-model-dev.net/10/639/2017/ (2017)
  • Tost, H.: Chemistry–climate interactions of aerosol nitrate from lightning, Atmospheric Chemistry and Physics, 17, 1125–1142, doi: 10.5194/acp-17-1125-2017, URL http://www.atmos-chem-phys.net/17/1125/2017/ (2017)
  • Lennartz, S. T., Marandino, C. A., von Hobe, M., Cortes, P., Quack, B., Simo, R., Booge, D., Pozzer, A., Steinhoff, T., Arevalo-Martinez, D. L., Kloss, C., Bracher, A., Röttgers, R., Atlas, E., & Krüger, K.: Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide, Atmospheric Chemistry and Physics, 17, 385–402, doi: 10.5194/acp-17-385-2017, URL http://www.atmos-chem-phys.net/17/385/2017/ (2017)

2016

  • Finney, D. L., Doherty, R. M., Wild, O., Young, P. J., & Butler, A.: Response of lightning NOx emissions and ozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project, Geophysical Research Letters, 43, 5492–5500, doi: 10.1002/2016GL068825, URL http://dx.doi.org/10.1002/2016GL068825, 2016GL068825 (2016)
  • Langematz, U., Schmidt, F., Kunze, M., Bodeker, G. E., & Braesicke, P.: Antarctic ozone depletion between 1960 and 1980 in observations and chemistry–climate model simulations, Atmospheric Chemistry and Physics, 16, 15 619–15 627, doi: 10.5194/acp-16-15619-2016, URL http://www.atmos-chem-phys.net/16/15619/2016/ (2016)
  • Godolt, M., Grenfell, J. L., Kitzmann, D., Kunze, M., Langematz, U., Patzer, A. B. C., Rauer, H., & Stracke, B.: Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling, Astronomy & Astrophysics, 592, A36, doi: 10.1051/0004-6361/201628413, URL https://doi.org/10.1051/0004-6361/201628413 (2016)
  • Bacer, S., Christoudias, T., & Pozzer, A.: Projection of North Atlantic Oscillation and its effect on tracer transport, Atmospheric Chemistry and Physics, 16, 15 581–15 592, doi: 10.5194/acp-16-15581-2016, URL http://www.atmos-chem-phys.net/16/15581/2016/ (2016)
  • Lelieveld, J., Gromov, S., Pozzer, A., & Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmospheric Chemistry and Physics, 16, 12 477–12 493, doi: 10.5194/acp-16-12477-2016, URL http://www.atmos-chem-phys.net/16/12477/2016/ (2016)
  • Rieger, V. S., Dietmüller, S., & Ponater, M.: Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?, Climate Dynamics, 49, 2831–2844, doi: 10.1007/s00382-016-3476-x, URL https://doi.org/10.1007/s00382-016-3476-x (2017)
  • Castelli, E., Ridolfi, M., Carlotti, M., Sinnhuber, B.-M., Kirner, O., Kiefer, M., & Dinelli, B. M.: Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals, Atmospheric Measurement Techniques, 9, 5499–5508, doi: 10.5194/amt-9-5499-2016, URL http://www.atmos-meas-tech.net/9/5499/2016/ (2016)
  • Akritidis, D., Pozzer, A., Zanis, P., Tyrlis, E., Škerlak, B., Sprenger, M., & Lelieveld, J.: On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East, Atmospheric Chemistry and Physics, 16, 14 025–14 039, doi: 10.5194/acp-16-14025-2016, URL http://www.atmos-chem-phys.net/16/14025/2016/ (2016)
  • Hellmer, H. H., Rhein, M., Heinemann, G., Abalichin, J., Abouchami, W., Baars, O., Cubasch, U., Dethloff, K., Ebner, L., Fahrbach, E., Frank, M., Gollan, G., Greatbatch, R. J., Grieger, J., Gryanik, V. M., Gryschka, M., Hauck, J., Hoppema, M., Huhn, O., Kanzow, T., Koch, B. P., König-Langlo, G., Langematz, U., Leckebusch, G. C., Lüpkes, C., Paul, S., Rinke, A., Rost, B., van der Loeff, M. R., Schröder, M., Seckmeyer, G., Stichel, T., Strass, V., Timmermann, R., Trimborn, S., Ulbrich, U., Venchiarutti, C., Wacker, U., Willmes, S., & Wolf-Gladrow, D.: Meteorology and oceanography of the Atlantic sector of the Southern Ocean—a review of German achievements from the last decade, Ocean Dynamics, 66, 1379–1413, doi: 10.1007/s10236-016-0988-1, URL http://dx.doi.org/10.1007/s10236-016-0988-1 (2016)
  • Kern, B. & Jöckel, P.: A diagnostic interface for the ICOsahedral Non-hydrostatic (ICON) modelling framework based on the Modular Earth Submodel System (MESSy v2.50), Geoscientific Model Development, 9, 3639–3654, doi: 10.5194/gmd-9-3639-2016, URL http://www.geosci-model-dev.net/9/3639/2016/ (2016)
  • Mertens, M., Kerkweg, A., Jöckel, P., Tost, H., & Hofmann, C.: The 1-way on-line coupled model system MECO(n) – Part 4: Chemical evaluation (based on MESSy v2.52), Geoscientific Model Development, 9, 3545–3567, doi: 10.5194/gmd-9-3545-2016, URL http://www.geosci-model-dev.net/9/3545/2016/ (2016)
  • Funke, B., López-Puertas, M., Stiller, G. P., Versick, S., & von Clarmann, T.: A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation, Atmospheric Chemistry and Physics, 16, 8667–8693, doi: 10.5194/acp-16-8667-2016, URL http://www.atmos-chem-phys.net/16/8667/2016/ (2016)
  • Giannadaki, D., Lelieveld, J., & Pozzer, A.: Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year, Environmental Health, 15, 1–11, doi: 10.1186/s12940-016-0170-8, URL http://dx.doi.org/10.1186/s12940-016-0170-8 (2016)
  • Christou, M., Christoudias, T., Morillo, J., Alvarez, D., & Merx, H.: Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP), Geoscientific Model Development, 9, 3483–3491, doi: 10.5194/gmd-9-3483-2016, URL http://www.geosci-model-dev.net/9/3483/2016/ (2016)
  • Twohy, C. H., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Hill, T. C. J., Burrows, S. M., Kulkarni, G. R., Tanarhte, M., Kafle, D. N., & Toohey, D. W.: Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds, Atmospheric Chemistry and Physics, 16, 8205–8225, doi: 10.5194/acp-16-8205-2016, URL http://www.atmos-chem-phys.net/16/8205/2016/ (2016)
  • Yamashita, H., Grewe, V., Jöckel, P., Linke, F., Schaefer, M., & Sasaki, D.: Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0, Geoscientific Model Development, 9, 3363–3392, doi: 10.5194/gmd-9-3363-2016, URL http://www.geosci-model-dev.net/9/3363/2016/ (2016)
  • Singh, N., Solanki, R., Ojha, N., Janssen, R. H. H., Pozzer, A., & Dhaka, S. K.: Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations, Atmospheric Chemistry and Physics, 16, 10 559–10 572, doi: 10.5194/acp-16-10559-2016, URL http://www.atmos-chem-phys.net/16/10559/2016/ (2016)
  • Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S., & Zengast, G.: The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble, Atmospheric Chemistry and Physics, 16, 9847–9862, doi: 10.5194/acp-16-9847-2016, URL http://www.atmos-chem-phys.net/16/9847/2016/ (2016)
  • Hossaini, R., Patra, P. K., Leeson, A. A., Krysztofiak, G., Abraham, N. L., Andrews, S. J., Archibald, A. T., Aschmann, J., Atlas, E. L., Belikov, D. A., Bönisch, H., Carpenter, L. J., Dhomse, S., Dorf, M., Engel, A., Feng, W., Fuhlbrügge, S., Griffiths, P. T., Harris, N. R. P., Hommel, R., Keber, T., Krüger, K., Lennartz, S. T., Maksyutov, S., Mantle, H., Mills, G. P., Miller, B., Montzka, S. A., Moore, F., Navarro, M. A., Oram, D. E., Pfeilsticker, K., Pyle, J. A., Quack, B., Robinson, A. D., Saikawa, E., Saiz-Lopez, A., Sala, S., Sinnhuber, B.-M., Taguchi, S., Tegtmeier, S., Lidster, R. T., Wilson, C., & Ziska, F.: A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine, Atmospheric Chemistry and Physics, 16, 9163–9187, doi: 10.5194/acp-16-9163-2016, URL http://www.atmos-chem-phys.net/16/9163/2016/ (2016)
  • Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., & Lelieveld, J.: Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets, Atmospheric Chemistry and Physics, 16, 8939–8962, doi: 10.5194/acp-16-8939-2016, URL http://www.atmos-chem-phys.net/16/8939/2016/ (2016)
  • Kunze, M., Braesicke, P., Langematz, U., & Stiller, G.: Interannual variability of the boreal summer tropical UTLS in observations and CCMVal-2 simulations, Atmospheric Chemistry and Physics, 16, 8695–8714, doi: 10.5194/acp-16-8695-2016, URL http://www.atmos-chem-phys.net/16/8695/2016/ (2016)
  • Hoppe, C. M., Ploeger, F., Konopka, P., & Müller, R.: Kinematic and diabatic vertical velocity climatologies from achemistry climate model, Atmospheric Chemistry and Physics, 16, 6223–6239, doi: 10.5194/acp-16-6223-2016, URL http://www.atmos-chem-phys.net/16/6223/2016/ (2016)
  • Helmig, D., Rossabi, S., Hueber, J., Tans, P., Montzka, S. A., Masarie, K., Thoning, K., Plass, Claude, A., Carpenter, L. J., Lewis, A. C., Punjabi, S., Reimann, S., Vollmer, M. K., Steinbrecher, R., Hannigan, J. W., Emmons, L. K., Mahieu, E., Franco, B., Smale, D., & Pozzer, A.: Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production, Nature Geosci, 9, 490–495, doi: 10.1038/ngeo2721, URL http://dx.doi.org/10.1038/ngeo2721 (2016)
  • Brinkop, S., Dameris, M., Jöckel, P., Garny, H., Lossow, S., & Stiller, G.: The millennium water vapour drop in chemistryclimate model simulations, Atmospheric Chemistry and Physics, 16, 8125–8140, doi: 10.5194/acp-16-8125-2016, URL http://www.atmos-chem-phys.net/16/8125/2016/ (2016)
  • Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning de Vries, M., Pozzer, A., Sihler, H., Valks, P., & Wagner, T.: The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution, Atmospheric Measurement Techniques, 9, 2753–2779, doi: 10.5194/amt-9-2753-2016, URL http://www.atmos-meas-tech.net/9/2753/2016/ (2016)
  • Kiel, M., Hase, F., Blumenstock, T., & Kirner, O.: Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe, Atmospheric Measurement Techniques, 9, 2223–2239, doi: 10.5194/amt-9-2223-2016, URL http://www.atmos-meas-tech.net/9/2223/2016/ (2016)
  • Virolainen, Y. A., Timofeyev, Y. M., Polyakov, A. V., Ionov, D. V., Kirner, O., Poberovskii, A. V., & Imhasin, H. K.: Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation, Izvestiya, Atmospheric and Oceanic Physics, 52, 57–65, doi: 10.1134/S0001433815060146, URL http://dx.doi.org/10.1134/S0001433815060146 (2016)
  • Dietmüller, S., Jöckel, P., Tost, H., Kunze, M., Gellhorn, C., Brinkop, S., Frömming, C., Ponater, M., Steil, B., Lauer, A., & Hendricks, J.: A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51), Geoscientific Model Development, 9, 2209–2222, doi: 10.5194/gmd-9-2209-2016, URL http://www.geosci-model-dev.net/9/2209/2016/ (2016)
  • Cabrera-Perez, D., Taraborrelli, D., Sander, R., & Pozzer, A.: Global atmospheric budget of simple monocyclic aromatic compounds, Atmospheric Chemistry and Physics, 16, 6931–6947, doi: 10.5194/acp-16-6931-2016, URL http://www.atmos-chem-phys.net/16/6931/2016/ (2016)
  • Oberländer-Hayn, S., Gerber, E. P., Abalichin, J., Akiyoshi, H., Kerschbaumer, A., Kubin, A., Kunze, M., Langematz, U., Meul, S., Michou, M., Morgenstern, O., & Oman, L. D.: Is the Brewer-Dobson circulation increasing or moving upward?, Geophysical Research Letters, 43, 1772–1779, doi: 10.1002/2015GL067545, URL http://dx.doi.org/10.1002/2015GL067545, 2015GL067545 (2016)
  • Meul, S., Dameris, M., Langematz, U., Abalichin, J., Kerschbaumer, A., Kubin, A., & Oberländer-Hayn, S.: Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure, Geophysical Research Letters, 43, 2919–2927, doi: 10.1002/2016GL067997, URL http://dx.doi.org/10.1002/2016GL067997, 2016GL067997 (2016)
  • Löffler, M., Brinkop, S., & Jöckel, P.: Impact of major volcanic eruptions on stratospheric water vapour, Atmospheric Chemistry and Physics, 16, 6547–6562, doi: 10.5194/acp-16-6547-2016, URL http://www.atmos-chem-phys.net/16/6547/2016/ (2016)
  • Sukhodolov, T., Rozanov, E., Ball, W. T., Bais, A., Tourpali, K., Shapiro, A. I., Telford, P., Smyshlyaev, S., Fomin, B., Sander, R., Bossay, S., Bekki, S., Marchand, M., Chipperfield, M. P., Dhomse, S., Haigh, J. D., Peter, T., & Schmutz, W.: Evaluation of simulated photolysis rates and their response to solar irradiance variability, Journal of Geophysical Research: Atmospheres, pp. n/a–n/a, doi: 10.1002/2015JD024277, URL http://dx.doi.org/10.1002/2015JD024277, 2015JD024277 (2016)
  • Prank, M., Sofiev, M., Tsyro, S., Hendriks, C., Semeena, V., Vazhappilly Francis, X., Butler, T., Denier van der Gon, H., Friedrich, R., Hendricks, J., Kong, X., Lawrence, M., Righi, M., Samaras, Z., Sausen, R., Kukkonen, J., & Sokhi, R.: Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005, Atmospheric Chemistry and Physics, 16, 6041–6070, doi: 10.5194/acp-16-6041-2016, URL http://www.atmos-chem-phys.net/16/6041/2016/ (2016)
  • Righi, M., Hendricks, J., & Sausen, R.: The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 2: Aviation, Atmospheric Chemistry and Physics, 16, 4481–4495, doi: 10.5194/acp-16-4481-2016, URL http://www.atmos-chem-phys.net/16/4481/2016/ (2016)
  • Chandra, N., Venkataramani, S., Lal, S., Sheel, V., & Pozzer, A.: Effects of convection and long-range transport on the distribution of carbon monoxide in the troposphere over India, Atmospheric Pollution Research, pp. –, doi: http://dx.doi.org/10.1016/j.apr.2016.03.005, URL http://www.sciencedirect.com/science/article/pii/S1309104215300167 (2016)
  • Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., & Zahn, A.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geoscientific Model Development, 9, 1153–1200, doi: 10.5194/gmd-9-1153-2016, URL http://www.geosci-model-dev.net/9/1153/2016/ (2016)
  • Kristiansen, N. I., Stohl, A., Olivié, D. J. L., Croft, B., Søvde, O. A., Klein, H., Christoudias, T., Kunkel, D., Leadbetter, S. J., Lee, Y. H., Zhang, K., Tsigaridis, K., Bergman, T., Evangeliou, N., Wang, H., Ma, P.-L., Easter, R. C., Rasch, P. J., Liu, X., Pitari, G., Di Genova, G., Zhao, S. Y., Balkanski, Y., Bauer, S. E., Faluvegi, G. S., Kokkola, H., Martin, R. V., Pierce, J. R., Schulz, M., Shindell, D., Tost, H., & Zhang, H.: Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models, Atmospheric Chemistry and Physics, 16, 3525–3561, doi: 10.5194/acp-16-3525-2016, URL http://www.atmos-chem-phys.net/16/3525/2016/ (2016)
  • Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M., & Lelieveld, J.: Effects of mineral dust on global atmospheric nitrate concentrations, Atmospheric Chemistry and Physics, 16, 1491–1509, doi: 10.5194/acp-16-1491-2016, URL http://www.atmos-chem-phys.net/16/1491/2016/ (2016)
  • Kaiser, C.: Including Coarse Mode Aerosol Microphysics in a Climate Model: Model Development and First Application, Ph.D. thesis, Ludwig-Maximilians-Universität, URL http://elib.dlr.de/103328/, DLR-FB-2016-1, Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (2016)
  • Baumgaertner, A. J. G., Jöckel, P., Kerkweg, A., Sander, R., & Tost, H.: Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework, Geoscientific Model Development, 9, 125–135, doi: 10.5194/gmd-9-125-2016, URL http://www.geosci-model-dev.net/9/125/2016/ (2016)
  • Yoon, J., Pozzer, A., Chang, D., Lelieveld, J., Kim, J., Kim, M., Lee, Y., Koo, J.-H., Lee, J., & Moon, K.: Trend estimates of AERONET-observed and model-simulated AOTs between 1993 and 2013, Atmospheric Environment, 125, Part A, 33 – 47, doi: http://dx.doi.org/10.1016/j.atmosenv.2015.10.058, URL http://www.sciencedirect.com/science/article/pii/S1352231015304738 (2016)

2015

  • Makarova, M. V., Kirner, O., Timofeev, Y. M., Poberovskii, A. V., Imkhasin, K. K., Osipov, S. I., & Makarov, B. K.: Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region, Izvestiya, Atmospheric and Oceanic Physics, 51, 431–438, doi: 10.1134/S0001433815040088, URL https://doi.org/10.1134/S0001433815040088 (2015b)
  • Proestos, Y., Christophides, G. K., Ergüler, K., Tanarhte, M., Waldock, J., & Lelieveld, J.: Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370, doi: 10.1098/rstb.2013.0554, URL http://rstb.royalsocietypublishing.org/content/370/1665/20130554 (2015)
  • Ayarzagüena, B., Orsolini, Y. J., Langematz, U., Abalichin, J., & Kubin, A.: The Relevance of the Location of Blocking Highs for Stratospheric Variability in a Changing Climate, Journal of Climate, 28, 531–549, doi: 10.1175/JCLI-D-14-00210.1, URL http://dx.doi.org/10.1175/JCLI-D-14-00210.1 (2015)
  • Glatthor, N., Höpfner, M., Baker, I. T., Berry, J., Campbell, J. E., Kawa, S. R., Krysztofiak, G., Leyser, A., Sinnhuber, B.-M., Stiller, G. P., Stinecipher, J., & von Clarmann, T.: Tropical sources and sinks of carbonyl sulfide observed from space, Geophysical Research Letters, 42, 10,082–10,090, doi: 10.1002/2015GL066293, URL http://dx.doi.org/10.1002/2015GL066293, 2015GL066293 (2015)
  • Gläser, G., Wernli, H., Kerkweg, A., & Teubler, F.: The transatlantic dust transport from North Africa to the AmericasIts characteristics and source regions, Journal of Geophysical Research: Atmospheres, 120, 11,231–11,252, doi: 10.1002/2015JD023792, URL http://dx.doi.org/10.1002/2015JD023792, 2015JD023792 (2015)
  • Früchtl, M., Janssen, C., Taraborrelli, D., Gromov, S., & Röckmann, T.: Wavelength-dependent isotope fractionation in visible light O3 photolysis and atmospheric implications, Geophysical Research Letters, pp. n/a–n/a, doi: 10.1002/2015GL066219, URL http://dx.doi.org/10.1002/2015GL066219 (2015)
  • Lennartz, S. T., Krysztofiak, G., Marandino, C. A., Sinnhuber, B.-M., Tegtmeier, S., Ziska, F., Hossaini, R., Krüger, K., Montzka, S. A., Atlas, E., Oram, D. E., Keber, T., Bönisch, H., & Quack, B.: Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions, Atmospheric Chemistry and Physics, 15, 11 753–11 772, doi: 10.5194/acp-15-11753-2015, URL http://www.atmos-chem-phys.net/15/11753/2015/ (2015)
  • Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., & Lelieveld, J.: Dust–air pollution dynamics over the eastern Mediterranean, Atmospheric Chemistry and Physics, 15, 9173–9189, doi: 10.5194/acp-15-9173-2015, URL http://www.atmos-chem-phys.net/15/9173/2015/ (2015)
  • Lelieveld, J., Evans, J., Fnais, M., Giannadaki, D., & Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, doi: Letter, URL http://dx.doi.org/10.1038/nature15371 (2015)
  • Ouwersloot, H. G., Pozzer, A., Steil, B., Tost, H., & Lelieveld, J.: Revision of the convective transport module CVTRANS 2.4 in the EMAC atmospheric chemistry–climate model, Geoscientific Model Development, 8, 2435–2445, doi: 10.5194/gmd-8-2435-2015, URL http://www.geosci-model-dev.net/8/2435/2015/ (2015)
  • Wetzel, G., Oelhaf, H., Birk, M., de Lange, A., Engel, A., Friedl-Vallon, F., Kirner, O., Kleinert, A., Maucher, G., Nordmeyer, H., Orphal, J., Ruhnke, R., Sinnhuber, B.-M., & Vogt, P.: Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011, Atmospheric Chemistry and Physics, 15, 8065–8076, doi: 10.5194/acp-15-8065-2015, URL http://www.atmos-chem-phys.net/15/8065/2015/ (2015)
  • Makarova, M., Kirner, O., Timofeev, Y., Poberovskii, A., Imkhasin, K., Osipov, S., & Makarov, B.: Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations, Izvestiya, Atmospheric and Oceanic Physics, 51, 177–185, doi: 10.1134/S0001433815010089, URL http://dx.doi.org/10.1134/S0001433815010089 (2015a)
  • Oberländer-Hayn, S., Meul, S., Langematz, U., Abalichin, J., & Haenel, F.: A chemistry-climate model study of past changes in the Brewer-Dobson circulation, Journal of Geophysical Research: Atmospheres, doi: 10.1002/2014JD022843, URL http://dx.doi.org/10.1002/2014JD022843, 2014JD022843 (2015)
  • Eichinger, R., Jöckel, P., & Lossow, S.: Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO / H2O variations, Atmospheric Chemistry and Physics, 15, 7003–7015, doi: 10.5194/acp-15-7003-2015, URL http://www.atmos-chem-phys.net/15/7003/2015/ (2015b)
  • Meul, S., Oberländer-Hayn, S., Abalichin, J., & Langematz, U.: Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past, Atmospheric Chemistry and Physics, 15, 6897–6911, doi: 10.5194/acp-15-6897-2015, URL http://www.atmos-chem-phys.net/15/6897/2015/ (2015)
  • Fischer, H., Pozzer, A., Schmitt, T., Jöckel, P., Klippel, T., Taraborrelli, D., & Lelieveld, J.: Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007, Atmospheric Chemistry and Physics, 15, 6971–6980, doi: 10.5194/acp-15-6971-2015, URL http://www.atmos-chem-phys.net/15/6971/2015/ (2015)
  • Godolt, M., Grenfell, J., Hamann-Reinus, A., Kitzmann, D., Kunze, M., Langematz, U., von Paris, P., Patzer, A., Rauer, H., & Stracke, B.: 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars, Planetary and Space Science, 111, 62 – 76, doi: http://dx.doi.org/10.1016/j.pss.2015.03.010, URL http://www.sciencedirect.com/science/article/pii/S0032063315000707 (2015)
  • Pozzer, A., de Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., & Astitha, M.: AOD trends during 2001–2010 from observations and model simulations, Atmospheric Chemistry and Physics, 15, 5521–5535, doi: 10.5194/acp-15-5521-2015, URL http://www.atmos-chem-phys.net/15/5521/2015/ (2015)
  • Eichinger, R., Jöckel, P., Brinkop, S., Werner, M., & Lossow, S.: Simulation of the isotopic composition of stratospheric water vapour – Part 1: Description and evaluation of the EMAC model, Atmospheric Chemistry and Physics, 15, 5537–5555, doi: 10.5194/acp-15-5537-2015, URL http://www.atmos-chem-phys.net/15/5537/2015/ (2015a)
  • Sinnhuber, B.-M. & Meul, S.: Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends, Geophysical Research Letters, 42, 2449–2456, doi: 10.1002/2014GL062975, URL http://dx.doi.org/10.1002/2014GL062975, 2014GL062975 (2015)
  • Righi, M., Eyring, V., Gottschaldt, K.-D., Klinger, C., Frank, F., Jöckel, P., & Cionni, I.: Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations, Geoscientific Model Development, 8, 733–768, doi: 10.5194/gmd-8-733-2015, URL http://www.geosci-model-dev.net/8/733/2015/ (2015a)
  • Brühl, C., Lelieveld, J., Tost, H., Höpfner, M., & Glatthor, N.: Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC, Journal of Geophysical Research: Atmospheres, pp. 2103–2118, doi: 10.1002/2014JD022430, URL http://dx.doi.org/10.1002/2014JD022430 (2015)
  • Righi, M., Hendricks, J., & Sausen, R.: The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 1: Land transport and shipping, Atmospheric Chemistry and Physics, 15, 633–651, doi: 10.5194/acp-15-633-2015, URL http://www.atmos-chem-phys.net/15/633/2015/ (2015b)
  • Kirner, O., Ruhnke, R., & Sinnhuber, B.-M.: Chemistry–Climate Interactions of Stratospheric and Mesospheric Ozone in EMAC Long-Term Simulations with Different Boundary Conditions for CO2, CH4, N2O, and ODS, Atmosphere-Ocean, 53, 140–152, doi: 10.1080/07055900.2014.980718, URL http://dx.doi.org/10.1080/07055900.2014.980718 (2015b)
  • Virolainen, Y., Timofeyev, Y., Poberovskii, A., Kirner, O., & Hoepfner, M.: Chlorine nitrate in the atmosphere over St. Petersburg, Izvestiya, Atmospheric and Oceanic Physics, 51, 49–56, doi: 10.1134/S0001433815010119, URL http://dx.doi.org/10.1134/S0001433815010119 (2015)
  • Kirner, O., Müller, R., Ruhnke, R., & Fischer, H.: Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring, Atmospheric Chemistry and Physics, 15, 2019–2030, doi: 10.5194/acp-15-2019-2015, URL http://www.atmos-chem-phys.net/15/2019/2015/ (2015a)
  • Janssen, R. H. H. & Pozzer, A.: Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy), Geoscientific Model Development, 8, 453–471, doi: 10.5194/gmd-8-453-2015, URL http://www.geosci-model-dev.net/8/453/2015/ (2015)

2014

  • Hofmann, C.: Austauschprozesse an Tropopausenfalten extratropischer Zyklonen, Ph.D. thesis, Johannes Gutenberg-Universität, URL https://publications.ub.uni-mainz.de/theses/volltexte/2014/3926/pdf/3926.pdf (2014)
  • Hoffmann, L., Hoppe, C. M., Müller, R., Dutton, G. S., Gille, J. C., Griessbach, S., Jones, A., Meyer, C. I., Spang, R., Volk, C. M., & Walker, K. A.: Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies, Atmospheric Chemistry and Physics, 14, 12 479–12 497, doi: 10.5194/acp-14-12479-2014, URL http://www.atmos-chem-phys.net/14/12479/2014/ (2014)
  • Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N., & Lelieveld, J.: ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere, Geoscientific Model Development, 7, 3153–3172, doi: 10.5194/gmd-7-3153-2014, URL http://www.geosci-model-dev.net/7/3153/2014/ (2014)
  • Christoudias, T., Proestos, Y., & Lelieveld, J.: Atmospheric Dispersion of Radioactivity from Nuclear Power Plant Accidents: Global Assessment and Case Study for the Eastern Mediterranean and Middle East, Energies, 7, 8338–8354, doi: 10.3390/en7128338, URL http://www.mdpi.com/1996-1073/7/12/8338 (2014b)
  • Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J., Müller, J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O’Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., & Zhang, X.: The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmospheric Chemistry and Physics, 14, 10 845–10 895, doi: 10.5194/acp-14-10845-2014, URL http://www.atmos-chem-phys.net/14/10845/2014/ (2014)
  • Klingmüller, K., Steil, B., Brühl, C., Tost, H., & Lelieveld, J.: Sensitivity of aerosol radiative effects to different mixing assumptions in the AEROPT 1.0 submodel of the EMAC atmospheric-chemistry–climate model, Geoscientific Model Development, 7, 2503–2516, doi: 10.5194/gmd-7-2503-2014, URL http://www.geosci-model-dev.net/7/2503/2014/ (2014)
  • Hoppe, C. M.: A Lagrangian transport core for the simulation of stratospheric trace species in a Chemistry Climate Model, Ph.D. thesis, Universität Wuppertal, URL http://nbn-resolving.de/urn:nbn:de:hbz:468-20141006-094512-8 (2014)
  • Tsati, E.-E.: Investigation of the impacts of emissions on the trace gas budgets in the troposphere by using global climate chemistry model simulations, Ph.D. thesis, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-175246 (2014)
  • Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., & Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geoscientific Model Development, 7, 2653–2662, doi: 10.5194/gmd-7-2653-2014, URL http://www.geosci-model-dev.net/7/2653/2014/ (2014)
  • Hoppe, C. M., Hoffmann, L., Konopka, P., Grooß, J.-U., Ploeger, F., Günther, G., Jöckel, P., & Müller, R.: The implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species, Geoscientific Model Development, 7, 2639–2651, doi: 10.5194/gmd-7-2639-2014, URL http://www.geosci-model-dev.net/7/2639/2014/ (2014)
  • Haga, D. I., Burrows, S. M., Iannone, R., Wheeler, M. J., Mason, R. H., Chen, J., Polishchuk, E. A., Pöschl, U., & Bertram, A. K.: Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores, Atmospheric Chemistry and Physics, 14, 8611–8630, doi: 10.5194/acp-14-8611-2014, URL http://www.atmos-chem-phys.net/14/8611/2014/ (2014)
  • Yoon, J. & Pozzer, A.: Model-simulated trend of surface carbon monoxide for the 2001–2010 decade, Atmospheric Chemistry and Physics, 14, 10 465–10 482, doi: 10.5194/acp-14-10465-2014, URL http://www.atmos-chem-phys.net/14/10465/2014/ (2014)
  • Søvde, O. A., Matthes, S., Skowron, A., Iachetti, D., Lim, L., Owen, B., Hodnebrog, Ø., Genova, G. D., Pitari, G., Lee, D. S., Myhre, G., & Isaksen, I. S.: Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry, Atmospheric Environment, 95, 468 – 479, doi: http://dx.doi.org/10.1016/j.atmosenv.2014.06.049, URL http://www.sciencedirect.com/science/article/pii/S1352231014004956 (2014)
  • Neumaier, M., Ruhnke, R., Kirner, O., Ziereis, H., Stratmann, G., Brenninkmeijer, C. A. M., & Zahn, A.: Impact of acetone (photo)oxidation on HOx production in the UT/LMS based on CARIBIC passenger aircraft observations and EMAC simulations, Geophysical Research Letters, 41, 3289–3297, doi: 10.1002/2014GL059480, URL http://dx.doi.org/10.1002/2014GL059480 (2014)
  • Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., Fischer, H., Keronen, P., Kubistin, D., Nölscher, A. C., Oswald, R., Paasonen, P., Petäjä, T., Regelin, E., Sander, R., Sinha, V., Sipilä, M., Taraborrelli, D., Tatum Ernest, C., Williams, J., Lelieveld, J., & Harder, H.: Observation and modelling of HOx radicals in a boreal forest, Atmospheric Chemistry and Physics, 14, 8723–8747, doi: 10.5194/acp-14-8723-2014, URL http://www.atmos-chem-phys.net/14/8723/2014/ (2014)
  • Eichinger, R.: Investigation of stratospheric water vapour by means of the simulation of water isotopologues, Ph.D. thesis, Ludwig-Maximilians-Universität München, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-172359 (2014)
  • Heue, K.-P., Riede, H., Walter, D., Brenninkmeijer, C. A. M., Wagner, T., Frieß, U., Platt, U., Zahn, A., Stratmann, G., & Ziereis, H.: CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud, Atmospheric Chemistry and Physics, 14, 6621–6642, doi: 10.5194/acp-14-6621-2014, URL http://www.atmos-chem-phys.net/14/6621/2014/ (2014)
  • Valks, P., Hao, N., Gimeno Garcia, S., Loyola, D., Dameris, M., Jöckel, P., & Delcloo, A.: Tropical tropospheric ozone column retrieval for GOME-2, Atmospheric Measurement Techniques, 7, 2513–2530, doi: 10.5194/amt-7-2513-2014, URL http://www.atmos-meas-tech.net/7/2513/2014/ (2014)
  • Kunze, M., Godolt, M., Langematz, U., Grenfell, J., Hamann-Reinus, A., & Rauer, H.: Investigating the early Earth faint young Sun problem with a general circulation model, Planetary and Space Science, 98, 77 – 92, doi: http://dx.doi.org/10.1016/j.pss.2013.09.011, URL http://www.sciencedirect.com/science/article/pii/S0032063313002389, planetary evolution and life (2014)
  • Eichinger, R. & Jöckel, P.: The generic MESSy submodel TENDENCY (v1.0) for process-based analyses in Earth system models, Geoscientific Model Development, 7, 1573–1582, doi: 10.5194/gmd-7-1573-2014, URL http://www.geosci-model-dev.net/7/1573/2014/ (2014)
  • Dietmüller, S., Ponater, M., & Sausen, R.: Interactive ozone induces a negative feedback in CO2-driven climate change simulations, Journal of Geophysical Research: Atmospheres, 119, 1796–1805, doi: 10.1002/2013JD020575, URL http://dx.doi.org/10.1002/2013JD020575 (2014)
  • Gromov, S.: Stable isotope composition of atmospheric carbon monoxide: a modelling study, Ph.D. thesis, Johannes Gutenberg University Mainz, URL http://ubm.opus.hbz-nrw.de/volltexte/2014/3747/ (2014)
  • Kaiser, J. C., Hendricks, J., Righi, M., Riemer, N., Zaveri, R. A., Metzger, S., & Aquila, V.: The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test, Geoscientific Model Development, 7, 1137–1157, doi: 10.5194/gmd-7-1137-2014, URL http://www.geosci-model-dev.net/7/1137/2014/ (2014)
  • Castelli, E., Bianco, S. D., Dinelli, B. M., Gerber, D., Oelhaf, H., Woiwode, W., Vogel, B., Sinnhuber, B.-M., Ruhnke, R., & Cortesi, U.: Results of the preparatory study ”PREMIER Analysis of Campaign Data”, Annals of Geophysics, 56, URL http://www.annalsofgeophysics.eu/index.php/annals/article/view/6333 (2014)
  • Rybka, H. & Tost, H.: Uncertainties in future climate predictions due to convection parameterisations, Atmospheric Chemistry and Physics, 14, 5561–5576, doi: 10.5194/acp-14-5561-2014, URL http://www.atmos-chem-phys.net/14/5561/2014/ (2014)
  • Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G., O’Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H.-C., Swietlicki, E., & Henzing, J. S.: Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmospheric Chemistry and Physics, 14, 4679–4713, doi: 10.5194/acp-14-4679-2014, URL http://www.atmos-chem-phys.net/14/4679/2014/ (2014)
  • Christoudias, T., Proestos, Y., & Lelieveld, J.: Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades, Atmospheric Chemistry and Physics, 14, 4607–4616, doi: 10.5194/acp-14-4607-2014, URL http://www.atmos-chem-phys.net/14/4607/2014/ (2014a)
  • Grewe, V., Champougny, T., Matthes, S., Frömming, C., Brinkop, S., Søvde, O. A., Irvine, E. A., & Halscheidt, L.: Reduction of the air traffic’s contribution to climate change: A REACT4C case study, Atmospheric Environment, doi: http://dx.doi.org/10.1016/j.atmosenv.2014.05.059, URL http://www.sciencedirect.com/science/article/pii/S1352231014004063 (2014a)
  • Langematz, U., Meul, S., Grunow, K., Romanowsky, E., Oberländer, S., Abalichin, J., & Kubin, A.: Future Arctic temperature and ozone: The role of stratospheric composition changes, Journal of Geophysical Research: Atmospheres, 119, 2092–2112, doi: 10.1002/2013JD021100, URL http://dx.doi.org/10.1002/2013JD021100 (2014)
  • Grewe, V., Brinkop, S., Jöckel, P., Shin, S., Reich, S., & Yserentant, H.: On the theory of mass conserving transformations for Lagrangian methods in 3D atmosphere-chemistry models, Meteorologische Zeitschrift, pp. –, URL http://dx.doi.org/10.1127/0941-2948/2014/0552 (2014)
  • Meul, S., Langematz, U., Oberländer, S., Garny, H., & Jöckel, P.: Chemical contribution to future tropical ozone change in the lower stratosphere, Atmospheric Chemistry and Physics, 14, 2959–2971, doi: 10.5194/acp-14-2959-2014, URL http://www.atmos-chem-phys.net/14/2959/2014/ (2014)
  • Bohlinger, P., Sinnhuber, B.-M., Ruhnke, R., & Kirner, O.: Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends, Atmospheric Chemistry and Physics, 14, 1679–1688, doi: 10.5194/acp-14-1679-2014, URL http://www.atmos-chem-phys.net/14/1679/2014/ (2014)
  • Liu, C., Beirle, S., Butler, T., Hoor, P., Frankenberg, C., Jöckel, P., Penning de Vries, M., Platt, U., Pozzer, A., Lawrence, M. G., Lelieveld, J., Tost, H., & Wagner, T.: Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations, Atmospheric Chemistry and Physics, 14, 1717–1732, doi: 10.5194/acp-14-1717-2014, URL http://www.atmos-chem-phys.net/14/1717/2014/ (2014)
  • Elshorbany, Y. F., Crutzen, P. J., Steil, B., Pozzer, A., Tost, H., & Lelieveld, J.: Global and regional impacts of HONO on the chemical composition of clouds and aerosols, Atmospheric Chemistry and Physics, 14, 1167–1184, doi: 10.5194/acp-14-1167-2014, URL http://www.atmos-chem-phys.net/14/1167/2014/ (2014)
  • Giannadaki, D., Pozzer, A., & Lelieveld, J.: Modeled global effects of airborne desert dust on air quality and premature mortality, Atmospheric Chemistry and Physics, 14, 957–968, doi: 10.5194/acp-14-957-2014, URL http://www.atmos-chem-phys.net/14/957/2014/ (2014)
  • Zanis, P., Hadjinicolaou, P., Pozzer, A., Tyrlis, E., Dafka, S., Mihalopoulos, N., & Lelieveld, J.: Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East, Atmospheric Chemistry and Physics, 14, 115–132, doi: 10.5194/acp-14-115-2014, URL http://www.atmos-chem-phys.net/14/115/2014/ (2014)
  • Grewe, V., Frömming, C., Matthes, S., Brinkop, S., Ponater, M., Dietmüller, S., Jöckel, P., Garny, H., Tsati, E., Dahlmann, K., Søvde, O. A., Fuglestvedt, J., Berntsen, T. K., Shine, K. P., Irvine, E. A., Champougny, T., & Hullah, P.: Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0), Geoscientific Model Development, 7, 175–201, doi: 10.5194/gmd-7-175-2014, URL http://www.geosci-model-dev.net/7/175/2014/ (2014b)

2013

  • Kern, B.: Chemical interaction between ocean and atmosphere, Ph.D. thesis, Johannes Gutenberg-Universität Mainz, URL http://doi.org/10.25358/openscience-4239 (2013)
  • Oberländer, S.: Change of the Brewer-Dobson Circulation in a Changing Climate, A Model Study with the Chemistry-Climate Model EMAC, Ph.D. thesis, Freie Universität Berlin, URL http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094948 (2013)
  • Meul, S.: Ozone-Climate-Feedbacks in Simulations with the Chemistry-Climate Model EMAC, Ph.D. thesis, Freie Universität Berlin, URL http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094949 (2013)
  • Ayarzagüena, B., Langematz, U., Meul, S., Oberländer, S., Abalichin, J., & Kubin, A.: The role of climate change and ozone recovery for the future timing of major stratospheric warmings, Geophysical Research Letters, 40, 2460–2465, doi: 10.1002/grl.50477, URL http://dx.doi.org/10.1002/grl.50477 (2013)
  • van Eijck, A., Opatz, T., Taraborrelli, D., Sander, R., & Hoffmann, T.: New tracer compounds for secondary organic aerosol formation from -caryophyllene oxidation, Atmospheric Environment, 80, 122 – 130, doi: http://dx.doi.org/10.1016/j.atmosenv.2013.07.060, URL http://www.sciencedirect.com/science/article/pii/S1352231013005918 (2013)
  • Oberländer, S., Langematz, U., & Meul, S.: Unraveling impact factors for future changes in the Brewer-Dobson circulation, Journal of Geophysical Research: Atmospheres, 118, 10,296–10,312, doi: 10.1002/jgrd.50775, URL http://dx.doi.org/10.1002/jgrd.50775 (2013)
  • Regelin, E., Harder, H., Martinez, M., Kubistin, D., Tatum Ernest, C., Bozem, H., Klippel, T., Hosaynali-Beygi, Z., Fischer, H., Sander, R., Jöckel, P., Königstedt, R., & Lelieveld, J.: HOx measurements in the summertime upper troposphere over Europe: a comparison of observations to a box model and a 3-D model, Atmospheric Chemistry and Physics, 13, 10 703–10 720, doi: 10.5194/acp-13-10703-2013, URL http://www.atmos-chem-phys.net/13/10703/2013/ (2013)
  • Righi, M., Hendricks, J., & Sausen, R.: The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions, Atmospheric Chemistry and Physics, 13, 9939–9970, doi: 10.5194/acp-13-9939-2013, URL http://www.atmos-chem-phys.net/13/9939/2013/ (2013)
  • Lelieveld, J., Barlas, C., Giannadaki, D., & Pozzer, A.: Model calculated global, regional and megacity premature mortality due to air pollution, Atmospheric Chemistry and Physics, 13, 7023–7037, doi: 10.5194/acp-13-7023-2013, URL http://www.atmos-chem-phys.net/13/7023/2013/ (2013)
  • Benduhn, F. & Lawrence, M. G.: An investigation of the role of sedimentation for stratospheric solar radiation management, Journal of Geophysical Research: Atmospheres, 118, 7905–7921, doi: 10.1002/jgrd.50622, URL http://dx.doi.org/10.1002/jgrd.50622 (2013)
  • Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S., & Zeng, G.: Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change, Environmental Research Letters, 8, 034 005, URL http://stacks.iop.org/1748-9326/8/i=3/a=034005 (2013)
  • Burrows, S. M., Rayner, P. J., Butler, T., & Lawrence, M. G.: Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics, Atmospheric Chemistry and Physics, 13, 5473–5488, doi: 10.5194/acp-13-5473-2013, URL http://www.atmos-chem-phys.net/13/5473/2013/ (2013b)
  • Hassellöv, I.-M., Turner, D. R., Lauer, A., & Corbett, J. J.: Shipping contributes to ocean acidification, Geophysical Research Letters, pp. n/a–n/a, doi: 10.1002/grl.50521, URL http://dx.doi.org/10.1002/grl.50521 (2013)
  • Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., & Zeng, G.: Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmospheric Chemistry and Physics, 13, 5277–5298, doi: 10.5194/acp-13-5277-2013, URL http://www.atmos-chem-phys.net/13/5277/2013/ (2013)
  • Kunkel, D., Tost, H., & Lawrence, M. G.: Aerosol pollution potential from major population centers, Atmospheric Chemistry and Physics, 13, 4203–4222, doi: 10.5194/acp-13-4203-2013, URL http://www.atmos-chem-phys.net/13/4203/2013/ (2013)
  • Khosrawi, F., Müller, R., Urban, J., Proffitt, M. H., Stiller, G., Kiefer, M., Lossow, S., Kinnison, D., Olschewski, F., Riese, M., & Murtagh, D.: Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N2O and O3 in the tropical lower stratosphere, Atmospheric Chemistry and Physics, 13, 3619–3641, doi: 10.5194/acp-13-3619-2013, URL http://www.atmos-chem-phys.net/13/3619/2013/ (2013)
  • Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., & Archibald, A.: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmospheric Chemistry and Physics, 13, 3063–3085, doi: 10.5194/acp-13-3063-2013, URL http://www.atmos-chem-phys.net/13/3063/2013/ (2013)
  • Gottschaldt, K., Voigt, C., Jöckel, P., Righi, M., Deckert, R., & Dietmüller, S.: Global sensitivity of aviation NOx effects to the HNO3-forming channel of the HO2 + NO reaction, Atmospheric Chemistry and Physics, 13, 3003–3025, doi: 10.5194/acp-13-3003-2013, URL http://www.atmos-chem-phys.net/13/3003/2013/ (2013)
  • Voulgarakis, A., Naik, V., Lamarque, J.-F., Shindell, D. T., Young, P. J., Prather, M. J., Wild, O., Field, R. D., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Folberth, G. A., Horowitz, L. W., Josse, B., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Stevenson, D. S., Strode, S. A., Sudo, K., Szopa, S., & Zeng, G.: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmospheric Chemistry and Physics, 13, 2563–2587, doi: 10.5194/acp-13-2563-2013, URL http://www.atmos-chem-phys.net/13/2563/2013/ (2013)
  • Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., & Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmospheric Chemistry and Physics, 13, 2063–2090, doi: 10.5194/acp-13-2063-2013, URL http://www.atmos-chem-phys.net/13/2063/2013/ (2013)
  • Christoudias, T. & Lelieveld, J.: Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident, Atmospheric Chemistry and Physics, 13, 1425–1438, doi: 10.5194/acp-13-1425-2013, URL http://www.atmos-chem-phys.net/13/1425/2013/ (2013)
  • Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, A., & Zeng, G.: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geoscientific Model Development, 6, 179–206, doi: 10.5194/gmd-6-179-2013, URL http://www.geosci-model-dev.net/6/179/2013/ (2013)
  • Burrows, S. M., Hoose, C., Pöschl, U., & Lawrence, M. G.: Ice nuclei in marine air: biogenic particles or dust?, Atmospheric Chemistry and Physics, 13, 245–267, doi: 10.5194/acp-13-245-2013, URL http://www.atmos-chem-phys.net/13/245/2013/ (2013a)
  • Baumgaertner, A. J. G., Jöckel, P., Aylward, A. D., & Harris, M. J.: Simulation of Particle Precipitation Effects on the Atmosphere with the MESSy Model System, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by Lübken, F.-J., Springer Atmospheric Sciences, pp. 301–316, Springer Netherlands, doi: 10.1007/978-94-007-4348-9_17, URL http://dx.doi.org/10.1007/978-94-007-4348-9_17 (2013)
  • Langematz, U., Kubin, A., Brühl, C., Baumgaertner, A., Cubasch, U., & Spangehl, T.: Solar Effects on Chemistry and Climate Including Ocean Interactions, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by Lübken, F.-J., Springer Atmospheric Sciences, pp. 541–571, Springer Netherlands, doi: 10.1007/978-94-007-4348-9_29, URL http://dx.doi.org/10.1007/978-94-007-4348-9_29 (2013)

2012

  • Godolt, M.: 3D climate modeling of Earth-like extrasolar planets orbiting different types of central stars, Ph.D. thesis, URL http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/3531 (2012)
  • Gläser, G.: Mineral dust mobilisation, transport, and deposition in different climate epochs, Ph.D. thesis, Johannes Gutenberg-Universität Mainz, URL http://ubm.opus.hbz-nrw.de/volltexte/2013/3406/ (2012)
  • Pringle, K. J., Carslaw, K. S., Fan, T., Mann, G., Hill, A., Stier, P., Zhang, K., & Tost, H.: A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number, Atmospheric Chemistry and Physics, 12, 11 647–11 663, doi: 10.5194/acp-12-11647-2012, URL http://www.atmos-chem-phys.net/12/11647/2012/ (2012)
  • Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., & de Meij, A.: Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties, Atmospheric Chemistry and Physics, 12, 11 057–11 083, doi: 10.5194/acp-12-11057-2012, URL http://www.atmos-chem-phys.net/12/11057/2012/ (2012)
  • Elshorbany, Y. F., Steil, B., Brühl, C., & Lelieveld, J.: Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model, Atmospheric Chemistry and Physics, 12, 9977–10 000, doi: 10.5194/acp-12-9977-2012, URL http://www.atmos-chem-phys.net/12/9977/2012/ (2012)
  • Sihler, H., Platt, U., Beirle, S., Marbach, T., Kühl, S., Dörner, S., Verschaeve, J., Frieß, U., Pöhler, D., Vogel, L., Sander, R., & Wagner, T.: Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements, Atmospheric Measurement Techniques, 5, 2779–2807, doi: 10.5194/amt-5-2779-2012, URL http://www.atmos-meas-tech.net/5/2779/2012/ (2012)
  • Tronstad Lund, M., Eyring, V., Fuglestvedt, J., Hendricks, J., Lauer, A., Lee, D., & Righi, M.: Global-Mean Temperature Change from Shipping toward 2050: Improved Representation of the Indirect Aerosol Effect in Simple Climate Models, Environ. Sci. Technol., 46, 8868–8877, doi: 10.1021/es301166e, URL http://pubs.acs.org/doi/abs/10.1021/es301166e (2012)
  • Tost, H. & Pringle, K. J.: Improvements of organic aerosol representations and their effects in large-scale atmospheric models, Atmospheric Chemistry and Physics, 12, 8687–8709, doi: 10.5194/acp-12-8687-2012, URL http://www.atmos-chem-phys.net/12/8687/2012/ (2012)
  • Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather, M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsoren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W., Josse, B., Lamarque, J.-F., MacKenzie, I. A., Nagashima, T., O’Connor, F. M., Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K., Szopa, S., Takemura, T., & Zeng, G.: Global air quality and climate, Chem. Soc. Rev., 41, 6663–6683, doi: 10.1039/C2CS35095E, URL http://dx.doi.org/10.1039/C2CS35095E (2012)
  •  
  • Jöckel, P.: Earth System Modeling, in: Atmospheric Physics, edited by Schumann, U., Research Topics in Aerospace, pp. 577–590, Springer Berlin Heidelberg, doi: 10.1007/978-3-642-30183-4_35, URL http://dx.doi.org/10.1007/978-3-642-30183-4_35 (2012)
  • Pozzer, A., Zimmermann, P., Doering, U., van Aardenne, J., Tost, H., Dentener, F., Janssens-Maenhout, G., & Lelieveld, J.: Effects of business-as-usual anthropogenic emissions on air quality, Atmospheric Chemistry and Physics, 12, 6915–6937, doi: 10.5194/acp-12-6915-2012, URL http://www.atmos-chem-phys.net/12/6915/2012/ (2012b)
  • Wetzel, G., Oelhaf, H., Kirner, O., Friedl-Vallon, F., Ruhnke, R., Ebersoldt, A., Kleinert, A., Maucher, G., Nordmeyer, H., & Orphal, J.: Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex, Atmospheric Chemistry and Physics, 12, 6581–6592, doi: 10.5194/acp-12-6581-2012, URL http://www.atmos-chem-phys.net/12/6581/2012/ (2012)
  • Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., De Mazière, M., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock, T., Coffey, M. T., Demoulin, P., Fast, H., Feng, W., Goldman, A., Griffith, D. W. T., Hamann, K., Hannigan, J. W., Hase, F., Jones, N. B., Kagawa, A., Kaiser, I., Kasai, Y., Kirner, O., Kouker, W., Lindenmaier, R., Mahieu, E., Mittermeier, R. L., Monge-Sanz, B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Raffalski, U., Reddmann, T., Rettinger, M., Rinsland, C. P., Rozanov, E., Schneider, M., Senten, C., Servais, C., Sinnhuber, B.-M., Smale, D., Strong, K., Sussmann, R., Taylor, J. R., Vanhaelewyn, G., Warneke, T., Whaley, C., Wiehle, M., & Wood, S. W.: Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances, Atmospheric Chemistry and Physics, 12, 3527–3556, doi: 10.5194/acp-12-3527-2012, URL http://www.atmos-chem-phys.net/12/3527/2012/ (2012)
  • Lelieveld, J., Kunkel, D., & Lawrence, M. G.: Global risk of radioactive fallout after major nuclear reactor accidents, Atmospheric Chemistry and Physics, 12, 4245–4258, doi: 10.5194/acp-12-4245-2012, URL http://www.atmos-chem-phys.net/12/4245/2012/ (2012)
  • von Clarmann, T., Funke, B., Glatthor, N., Kellmann, S., Kiefer, M., Kirner, O., Sinnhuber, B.-M., & Stiller, G. P.: The MIPAS HOCl climatology, Atmospheric Chemistry and Physics, 12, 1965–1977, doi: 10.5194/acp-12-1965-2012, URL http://www.atmos-chem-phys.net/12/1965/2012/ (2012)
  • Taraborrelli, D., Lawrence, M. G., Crowley, J. N., Dillon, T. J., Gromov, S., Gro, C. B. M., Vereecken, L., & Lelieveld, J.: Hydroxyl radical buffered by the isoprene oxidation over tropical forests, Nature Geoscience, doi: 10.1038/ngeo1405 (2012)
  • Neef, L. J. & Matthes, K.: Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models, J. Geophys. Res., 117, D02107, doi: 10.1029/2011JD016555, URL http://dx.doi.org/10.1029/2011JD016555 (2012)
  • Gläser, G., Kerkweg, A., & Wernli, H.: The Mineral Dust Cycle in EMAC 2.40: sensitivity to the spectral resolution and the dust emission scheme, Atmospheric Chemistry and Physics, 12, 1611–1627, doi: 10.5194/acp-12-1611-2012, URL http://www.atmos-chem-phys.net/12/1611/2012/ (2012)
  • Dillon, T. J., Pozzer, A., Vereecken, L., Crowley, J. N., & Lelieveld, J.: Does acetone react with HO2 in the upper-troposphere?, Atmospheric Chemistry and Physics, 12, 1339–1351, doi: 10.5194/acp-12-1339-2012, URL http://www.atmos-chem-phys.net/12/1339/2012/ (2012)
  • Brühl, C., Lelieveld, J., Crutzen, P. J., & Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmospheric Chemistry and Physics, 12, 1239–1253, doi: 10.5194/acp-12-1239-2012, URL http://www.atmos-chem-phys.net/12/1239/2012/ (2012)
  • Pozzer, A., de Meij, A., Pringle, K. J., Tost, H., Doering, U. M., van Aardenne, J., & Lelieveld, J.: Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model, Atmospheric Chemistry and Physics, 12, 961–987, doi: 10.5194/acp-12-961-2012, URL http://www.atmos-chem-phys.net/12/961/2012/ (2012a)
  • Christoudias, T., Pozzer, A., & Lelieveld, J.: Influence of the North Atlantic Oscillation on air pollution transport, Atmospheric Chemistry and Physics, 12, 869–877, doi: 10.5194/acp-12-869-2012, URL http://www.atmos-chem-phys.net/12/869/2012/ (2012)
  • Hofmann, C., Kerkweg, A., Wernli, H., & Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system, Geoscientific Model Development, 5, 129–147, doi: 10.5194/gmd-5-129-2012, URL http://www.geosci-model-dev.net/5/129/2012/ (2012)
  • Kerkweg, A. & Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 2: On-line coupling with the Multi-Model-Driver (MMD), Geoscientific Model Development, 5, 111–128, doi: 10.5194/gmd-5-111-2012, URL http://www.geosci-model-dev.net/5/111/2012/ (2012a)
  • Kerkweg, A. & Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy, Geoscientific Model Development, 5, 87–110, doi: 10.5194/gmd-5-87-2012, URL http://www.geosci-model-dev.net/5/87/2012/ (2012b)
  • Kunkel, D., Lawrence, M. G., Tost, H., Kerkweg, A., Jöckel, P., & Borrmann, S.: Urban emission hot spots as sources for remote aerosol deposition, Geophys. Res. Lett., 39, L01808, doi: 10.1029/2011GL049634, URL http://dx.doi.org/10.1029/2011GL049634 (2012)
  • Kunkel, D.: Global modeling of pollutant transport and deposition from anthropogenic emission hot spots on global scale, Ph.D. thesis, Johannes Gutenberg University Mainz, URL http://ubm.opus.hbz-nrw.de/volltexte/2013/3412/ (2012)

2011

  • Strahan, S. E., Douglass, A. R., Stolarski, R. S., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M. P., Cugnet, D., Dhomse, S., Frith, S. M., Gettelman, A., Hardiman, S. C., Kinnison, D. E., Lamarque, J.-F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Olivié, D., Pawson, S., Pitari, G., Plummer, D. A., Pyle, J. A., Scinocca, J. F., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., & Yamashita, Y.: Using transport diagnostics to understand chemistry climate model ozone simulations, J. Geophys. Res., 116, D17302, doi: 10.1029/2010JD015360, URL http://dx.doi.org/10.1029/2010JD015360 (2011)
  • Pozzer, A., Jöckel, P., Kern, B., & Haak, H.: The Atmosphere-Ocean General Circulation Model EMAC-MPIOM, Geoscientific Model Development, 4, 771–784, doi: 10.5194/gmd-4-771-2011, URL http://www.geosci-model-dev.net/4/771/2011/ (2011)
  • Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., & Wissing, J. M.: Composition changes after the ”Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmospheric Chemistry and Physics, 11, 9089–9139, doi: 10.5194/acp-11-9089-2011, URL http://www.atmos-chem-phys.net/11/9089/2011/ (2011)
  • Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., & Lelieveld, J.: Corrigendum to ”Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state” published in Atmos. Chem. Phys., 11, 8497–8513, 2011, Atmospheric Chemistry and Physics, 11, 8825–8826, doi: 10.5194/acp-11-8825-2011, URL http://www.atmos-chem-phys.net/11/8825/2011/ (2011b)
  • Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., & Lelieveld, J.: Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state, Atmospheric Chemistry and Physics, 11, 8497–8513, doi: 10.5194/acp-11-8497-2011, URL http://www.atmos-chem-phys.net/11/8497/2011/ (2011a)
  • Kubin, A., Langematz, U., & Brühl, C.: Chemistry climate model simulations of the effect of the 27 day solar rotational cycle on ozone, J. Geophys. Res., 116, D15301, doi: 10.1029/2011JD015665, URL http://www.agu.org/pubs/crossref/2011/2011JD015665.shtml (2011)
  • Bais, A. F., Tourpali, K., Kazantzidis, A., Akiyoshi, H., Bekki, S., Braesicke, P., Chipperfield, M. P., Dameris, M., Eyring, V., Garny, H., Iachetti, D., Jöckel, P., Kubin, A., Langematz, U., Mancini, E., Michou, M., Morgenstern, O., Nakamura, T., Newman, P. A., Pitari, G., Plummer, D. A., Rozanov, E., Shepherd, T. G., Shibata, K., Tian, W., & Yamashita, Y.: Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects, Atmospheric Chemistry and Physics, 11, 7533–7545, doi: 10.5194/acp-11-7533-2011, URL http://www.atmos-chem-phys.net/11/7533/2011/ (2011)
  • Liu, C., Beirle, S., Butler, T., Liu, J., Hoor, P., Jöckel, P., Pozzer, A., Frankenberg, C., Lawrence, M. G., Lelieveld, J., Platt, U., & Wagner, T.: Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China, Atmospheric Chemistry and Physics, 11, 6083–6114, doi: 10.5194/acp-11-6083-2011, URL http://www.atmos-chem-phys.net/11/6083/2011/ (2011)
  • Steinkamp, J. & Lawrence, M. G.: Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM, Atmospheric Chemistry and Physics, 11, 6063–6082, doi: 10.5194/acp-11-6063-2011, URL http://www.atmos-chem-phys.net/11/6063/2011/ (2011)
  • Baumgaertner, A. J. G., Seppälä, A., Jöckel, P., & Clilverd, M. A.: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index, Atmospheric Chemistry and Physics, 11, 4521–4531, doi: 10.5194/acp-11-4521-2011, URL http://www.atmos-chem-phys.net/11/4521/2011/ (2011)
  • Klippel, T., Fischer, H., Bozem, H., Lawrence, M. G., Butler, T., Jöckel, P., Tost, H., Martinez, M., Harder, H., Regelin, E., Sander, R., Schiller, C. L., Stickler, A., & Lelieveld, J.: Distribution of hydrogen peroxide and formaldehyde over Central Europe during the HOOVER project, Atmospheric Chemistry and Physics, 11, 4391–4410, doi: 10.5194/acp-11-4391-2011, URL http://www.atmos-chem-phys.net/11/4391/2011/ (2011)
  • Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., & Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geoscientific Model Development, 4, 373–380, doi: 10.5194/gmd-4-373-2011, URL http://www.geosci-model-dev.net/4/373/2011/ (2011)
  • Righi, M., Klinger, C., Eyring, V., Hendricks, J., Lauer, A., & Petzold, A.: Climate Impact of Biofuels in Shipping: Global Model Studies of the Aerosol Indirect Effect, Environ. Sci. Technol., 45, 3519–3525, doi: 10.1021/es1036157 (2011)
  • Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B., Righi, M., & Dall’Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geoscientific Model Development, 4, 325–355, doi: 10.5194/gmd-4-325-2011, URL http://www.geosci-model-dev.net/4/325/2011/ (2011)
  • Forster, P. M., Fomichev, V. I., Rozanov, E., Cagnazzo, C., Jonsson, A. I., Langematz, U., Fomin, B., Iacono, M. J., Mayer, B., Mlawer, E., Myhre, G., Portmann, R. W., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li, J., Lemennais, P., Morgenstern, O., Oberländer, S., Sigmond, M., & Shibata, K.: Evaluation of radiation scheme performance within chemistry climate models, J. Geophys. Res., 116, D10302, doi: 10.1029/2010JD015361, URL http://www.agu.org/pubs/crossref/2011/2010JD015361.shtml (2011)
  • Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes, P. H., Krueger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S., Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris, M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque, J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S., Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., & Yamashita, Y.: Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116, doi: 10.1029/2010JD014995 (2011)
  • Deckert, R., Jöckel, P., Grewe, V., Gottschaldt, K.-D., & Hoor, P.: A quasi chemistry-transport model mode for EMAC, Geoscientific Model Development, 4, 195–206, doi: 10.5194/gmd-4-195-2011, URL http://www.geosci-model-dev.net/4/195/2011/ (2011)
  • Kirner, O., Ruhnke, R., Buchholz-Dietsch, J., Jöckel, P., Brühl, C., & Steil, B.: Simulation of polar stratospheric clouds in the chemistry-climate-model EMAC via the submodel PSC, Geoscientific Model Development, 4, 169–182, doi: 10.5194/gmd-4-169-2011, URL http://www.geosci-model-dev.net/4/169/2011/ (2011)
  • Montzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P., & Lelieveld, J.: Small Interannual Variability of Global Atmospheric Hydroxyl, Science, 331, 67–69, doi: 10.1126/science.1197640, URL http://www.sciencemag.org/content/331/6013/67.short (2011)
  • Kubin, A.: A model study on the influence of the 11-year solar cycle on the atmosphere, Ph.D. thesis, Freie Universität Berlin, URL http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000023835 (2011)
  • Dietmüller, S.: Relative Bedeutung chemischer und physikalischer Rückkopplungen in Klimasensitivitätsstudien mit dem Klima-Chemie-Modellsystem EMAC/MLO, Ph.D. thesis, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-136804 (2011)
  • Steinkamp, J.: Global simulated soil biogenic nitric oxide (NO) emissions: Impact, improvement and innovation, Ph.D. thesis, Johannes Gutenberg University Mainz, URL http://ubm.opus.hbz-nrw.de/volltexte/2011/2854/ (2011)

2010

  • Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., & Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geoscientific Model Development, 3, 717–752, doi: 10.5194/gmd-3-717-2010, URL http://www.geosci-model-dev.net/3/717/2010/ (2010)
  • Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eickhout, B., & Lelieveld, J.: Impact of future land use and land cover changes on atmospheric chemistry-climate interactions, J. Geophys. Res., 115, D23301, doi: 10.1029/2010JD014041, URL http://dx.doi.org/10.1029/2010JD014041 (2010)
  • Austin, J., Struthers, H., Scinocca, J., Plummer, D. A., Akiyoshi, H., Baumgaertner, A. J. G., Bekki, S., Bodeker, G. E., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny, H., Gettelman, A., Hardiman, S. C., Jöckel, P., Kinnison, D., Kubin, A., Lamarque, J. F., Langematz, U., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Nielsen, J. E., Pitari, G., Pyle, J., Rozanov, E., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., & Yamashita, Y.: Chemistry-climate model simulations of spring Antarctic ozone, J. Geophys. Res., 115D, D00M11, doi: 10.1029/2009JD013577, URL http://dx.doi.org/10.1029/2009JD013577 (2010)
  • Son, S.-W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo, K.-H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin, J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny, H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G., Plummer, D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., & Yamashita, Y.: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115D, D00M07, doi: 10.1029/2010JD014271, URL http://dx.doi.org/10.1029/2010JD014271 (2010)
  • Hegglin, M. I., Gettelman, A., Hoor, P., Krichevsky, R., Manney, G. L., Pan, L. L., Son, S.-W., Stiller, G., Tilmes, S., Walker, K. A., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Añel, J. A., Austin, J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Frith, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E., Lamarque, J. F., Mancini, E., Michou, M., Morgenstern, O., Nakamura, T., Olivié, D., Pawson, S., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E., Scinocca, J. F., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., & Yamashita, Y.: Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics, J. Geophys. Res., 115D, D00M09, doi: 10.1029/2010JD013884, URL http://dx.doi.org/10.1029/2010JD013884 (2010)
  • Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner, T., Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H., Austin, J., Bekki, S., Braesike, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E., Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Pawson, S., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., & Tian, W.: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends, J. Geophys. Res., 115D, D00M08, doi: 10.1029/2009JD013638, URL http://dx.doi.org/10.1029/2009JD013638 (2010)
  • Baumgaertner, A. J. G., Jöckel, P., Dameris, M., & Crutzen, P. J.: Will climate change increase ozone depletion from low-energy-electron precipitation?, Atmospheric Chemistry and Physics, 10, 9647–9656, doi: 10.5194/acp-10-9647-2010, URL http://www.atmos-chem-phys.net/10/9647/2010/ (2010a)
  • Pringle, K. J., Tost, H., Metzger, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Stier, P., Vignati, E., & Lelieveld, J.: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1), Geoscientific Model Development, 3, 391–412, doi: 10.5194/gmd-3-391-2010, URL http://www.geosci-model-dev.net/3/391/2010/ (2010a)
  • Morgenstern, O., Giorgetta, M. A., Shibata, K., Eyring, V., Waugh, D. W., Shepherd, T. G., Akiyoshi, H., Austin, J., Baumgaertner, A. J. G., Bekki, S., Braesicke, P., Brühl, C., Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S. M., Garny, H., Gettelman, A., Hardiman, S. C., Hegglin, M. I., Jöckel, P., Kinnison, D. E., Lamarque, J.-F., Mancini, E., Manzini, E., Marchand, M., Michou, M., Nakamura, T., Nielsen, J. E., Olivié, D., Pitari, G., Plummer, D. A., Rozanov, E., Scinocca, J. F., Smale, D., Teyssèdre, H., Toohey, M., Tian, W., & Yamashita, Y.: Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings, J. Geophys. Res., 115, D00M02, doi: 10.1029/2009JD013728, URL http://dx.doi.org/10.1029/2009JD013728 (2010)
  • Puķīte, J., Kühl, S., Deutschmann, T., Dörner, S., Jöckel, P., Platt, U., & Wagner, T.: The effect of horizontal gradients and spatial measurement resolution on the retrieval of global vertical NO2 distributions from SCIAMACHY measurements in limb only mode, Atmospheric Measurement Techniques, 3, 1155–1174, doi: 10.5194/amt-3-1155-2010, URL http://www.atmos-meas-tech.net/3/1155/2010/ (2010)
  • Williams, J., Custer, T., Riede, H., Sander, R., Jöckel, P., Hoor, P., Pozzer, A., Wong-Zehnpfennig, S., Hosaynali Beygi, Z., Fischer, H., Gros, V., Colomb, A., Bonsang, B., Yassaa, N., Peeken, I., Atlas, E. L., Waluda, C. M., van Aardenne, J. A., & Lelieveld, J.: Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean, Environmental Chemistry, 7, 171–182, doi: 10.1071/EN09154, URL http://www.publish.csiro.au/?paper=EN09154 (2010)
  • Gromov, S., Jöckel, P., Sander, R., & Brenninkmeijer, C. A. M.: A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases, Geoscientific Model Development, 3, 337–364, doi: 10.5194/gmd-3-337-2010, URL http://www.geosci-model-dev.net/3/337/2010/ (2010)
  • Baumgaertner, A. J. G., Jöckel, P., Steil, B., Tost, H., & Sander, R.: A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC, Geoscientific Model Development, 3, 321–328, doi: 10.5194/gmd-3-321-2010, URL http://www.geosci-model-dev.net/3/321/2010/ (2010c)
  • Baumgaertner, A. J. G., Jöckel, P., Riede, H., Stiller, G., & Funke, B.: Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events, Atmospheric Chemistry and Physics, 10, 7285–7302, doi: 10.5194/acp-10-7285-2010, URL http://www.atmos-chem-phys.net/10/7285/2010/ (2010b)
  • Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., & Lelieveld, J.: Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmospheric Chemistry and Physics, 10, 5241–5255, doi: 10.5194/acp-10-5241-2010, URL http://www.atmos-chem-phys.net/10/5241/2010/ (2010b)
  • Pozzer, A., Pollmann, J., Taraborrelli, D., Jöckel, P., Helmig, D., Tans, P., Hueber, J., & Lelieveld, J.: Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes, Atmospheric Chemistry and Physics, 10, 4403–4422, doi: 10.5194/acp-10-4403-2010, URL http://www.atmos-chem-phys.net/10/4403/2010/ (2010)
  • Zhu, S., Butler, T., Sander, R., Ma, J., & Lawrence, M. G.: Impact of dust on tropospheric chemistry over polluted regions: a case study of the Beijing megacity, Atmospheric Chemistry and Physics, 10, 3855–3873, doi: 10.5194/acp-10-3855-2010, URL http://www.atmos-chem-phys.net/10/3855/2010/ (2010)
  • Zhu, S.: Numeric simulation of heterogeneous chemistry on dust surface, Ph.D. thesis, Chinese Academy of Meteorological Sciences & Graduate University of Chinese Academy of Sciences (2010)
  • Tost, H., Lawrence, M. G., Brühl, C., Jöckel, P., The GABRIEL Team, & The SCOUT-O3-DARWIN/ACTIVE Team: Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging, Atmospheric Chemistry and Physics, 10, 1931–1951, doi: 10.5194/acp-10-1931-2010, URL http://www.atmos-chem-phys.net/10/1931/2010/ (2010)
  • Wetzel, G., Oelhaf, H., Kirner, O., Ruhnke, R., Friedl-Vallon, F., Kleinert, A., Maucher, G., Fischer, H., Birk, M., Wagner, G., & Engel, A.: First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections, Atmospheric Chemistry and Physics, 10, 931–945, doi: 10.5194/acp-10-931-2010, URL http://www.atmos-chem-phys.net/10/931/2010/ (2010)

2009

  • Winebrake, J. J., Corbett, J. J., Green, E. H., Lauer, A., & Eyring, V.: Mitigating the Health Impacts of Pollution from Oceangoing Shipping: An Assessment of Low-Sulfur Fuel Mandates, Environ. Sci. Technol., 43, 4776–4782, doi: 10.1021/es803224q, URL http://pubs.acs.org/doi/abs/10.1021/es803224q (2009)
  • Lauer, A., Eyring, V., Corbett, J. J., Wang, C., & Winebrake, J. J.: An assessment of near-future policy instruments for oceangoing shipping: Impact on atmospheric aerosol burdens and the Earth’s radiation budget, Environ. Sci. Technol., 43, 5592–5598, doi: 10.1021/es900922h, URL http://pubs.acs.org/doi/suppl/10.1021/es900922h (2009)
  • Palazzi, E., Fierli, F., Cairo, F., Cagnazzo, C., Di Donfrancesco, G., Manzini, E., Ravegnani, F., Schiller, C., D’Amato, F., & Volk, C. M.: Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data, Atmospheric Chemistry and Physics, 9, 9349–9367, doi: 10.5194/acp-9-9349-2009, URL http://www.atmos-chem-phys.net/9/9349/2009/ (2009)
  • Pozzer, A., Jöckel, P., & Van Aardenne, J.: The influence of the vertical distribution of emissions on tropospheric chemistry, Atmospheric Chemistry and Physics, 9, 9417–9432, doi: 10.5194/acp-9-9417-2009, URL http://www.atmos-chem-phys.net/9/9417/2009/ (2009)
  • Ganzeveld, L., Helmig, D., Fairall, C. W., Hare, J., & Pozzer, A.: Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies, Global Biogeochem. Cycles, 23, GB4021, doi: 10.1029/2008GB003301 (2009)
  • Riede, H., Jöckel, P., & Sander, R.: Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM, Geoscientific Model Development, 2, 267–280, doi: 10.5194/gmd-2-267-2009, URL http://www.geosci-model-dev.net/2/267/2009/ (2009)
  • Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., & Jöckel, P.: Corrigendum to ”Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)” published in Atmos. Chem. Phys., 6, 4617–4632, 2006, Atmospheric Chemistry and Physics, 9, 9569–9569, doi: 10.5194/acp-9-9569-2009, URL http://www.atmos-chem-phys.net/9/9569/2009/ (2009)
  • Burrows, S. M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Pöschl, U., & Lawrence, M. G.: Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems, Atmospheric Chemistry and Physics, 9, 9281–9297, doi: 10.5194/acp-9-9281-2009, URL http://www.atmos-chem-phys.net/9/9281/2009/ (2009)
  • Franke, K., Richter, A., Bovensmann, H., Eyring, V., Jöckel, P., Hoor, P., & Burrows, J. P.: Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data, Atmospheric Chemistry and Physics, 9, 7289–7301, doi: 10.5194/acp-9-7289-2009, URL http://www.atmos-chem-phys.net/9/7289/2009/ (2009)
  • Mangold, A., Grooß, J.-U., De Backer, H., Kirner, O., Ruhnke, R., & Müller, R.: A model study of the January 2006 low total ozone episode over Western Europe and comparison with ozone sonde data, Atmospheric Chemistry and Physics, 9, 6429–6451, doi: 10.5194/acp-9-6429-2009, URL http://www.atmos-chem-phys.net/9/6429/2009/ (2009)
  • Khosrawi, F., Müller, R., Proffitt, M. H., Ruhnke, R., Kirner, O., Jöckel, P., Grooß, J.-U., Urban, J., Murtagh, D., & Nakajima, H.: Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II, Atmospheric Chemistry and Physics, 9, 5759–5783, doi: 10.5194/acp-9-5759-2009, URL http://www.atmos-chem-phys.net/9/5759/2009/ (2009)
  • Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., & Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmospheric Chemistry and Physics, 9, 2751–2777, doi: 10.5194/acp-9-2751-2009, URL http://www.atmos-chem-phys.net/9/2751/2009/ (2009)
  • Baumgaertner, A. J. G., Jöckel, P., & Brühl, C.: Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons, Atmospheric Chemistry and Physics, 9, 2729–2740, doi: 10.5194/acp-9-2729-2009, URL http://www.atmos-chem-phys.net/9/2729/2009/ (2009)
  • Steinkamp, J., Ganzeveld, L. N., Wilcke, W., & Lawrence, M. G.: Influence of modelled soil biogenic NO emissions on related trace gases and the atmospheric oxidizing efficiency, Atmospheric Chemistry and Physics, 9, 2663–2677, doi: 10.5194/acp-9-2663-2009, URL http://www.atmos-chem-phys.net/9/2663/2009/ (2009)
  • Lelieveld, J., Hoor, P., Jöckel, P., Pozzer, A., Hadjinicolaou, P., Cammas, J.-P., & Beirle, S.: Severe ozone air pollution in the Persian Gulf region, Atmospheric Chemistry and Physics, 9, 1393–1406, doi: 10.5194/acp-9-1393-2009, URL http://www.atmos-chem-phys.net/9/1393/2009/ (2009)
  • Aquila, V.: Global model studies on the distribution and composition of potential atmospheric ice nuclei, Ph.D. thesis, Ludwig-Maximilians-Universität, München, DLR-Forschungsbericht 2010-12, ISSN 1434-8454 (2005)

2008

  • Kerkweg, A., Jöckel, P., Warwick, N., Gebhardt, S., Brenninkmeijer, C. A. M., & Lelieveld, J.: Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 2: Bromocarbons, Atmospheric Chemistry and Physics, 8, 5919–5939, doi: 10.5194/acp-8-5919-2008, URL http://www.atmos-chem-phys.net/8/5919/2008/ (2008b)
  • Kerkweg, A., Jöckel, P., Pozzer, A., Tost, H., Sander, R., Schulz, M., Stier, P., Vignati, E., Wilson, J., & Lelieveld, J.: Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH, Atmospheric Chemistry and Physics, 8, 5899–5917, doi: 10.5194/acp-8-5899-2008, URL http://www.atmos-chem-phys.net/8/5899/2008/ (2008a)
  • Butler, T. M., Taraborrelli, D., Brühl, C., Fischer, H., Harder, H., Martinez, M., Williams, J., Lawrence, M. G., & Lelieveld, J.: Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign, Atmospheric Chemistry and Physics, 8, 4529–4546, doi: 10.5194/acp-8-4529-2008, URL http://www.atmos-chem-phys.net/8/4529/2008/ (2008)
  • Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., & Pozzer, A.: Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER, Atmospheric Chemistry and Physics, 8, 1677–1687, doi: 10.5194/acp-8-1677-2008, URL http://www.atmos-chem-phys.net/8/1677/2008/ (2008)
  • Tanarhte, M.: Interactions between the hydrological cycle and atmospheric chemistry, Ph.D. thesis, Johannes Gutenberg-Universität Mainz, URL http://ubm.opus.hbz-nrw.de/volltexte/2009/1860/ (2008)
  • Kirner, O.: Prozessstudien der stratosphärischen Chemie und Dynamik mit Hilfe des Chemie-Klima-Modells ECHAM5/MESSy1, Ph.D. thesis, Universität Karsruhe, URL http://digbib.ubka.uni-karlsruhe.de/volltexte/1000010199 (2008)

2007

  • Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A.: Mortality from Ship Emissions, Environ. Sci. Technol., 41, 8512–8518, doi: 10.1021/es071686z, URL http://pubs.acs.org/cgi-bin/abstract.cgi/esthag/2007/41/i24/abs/es071686z.html (2007)
  • Tarasova, O. A., Brenninkmeijer, C. A. M., Jöckel, P., Zvyagintsev, A. M., & Kuznetsov, G. I.: A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results, Atmospheric Chemistry and Physics, 7, 6099–6117, doi: 10.5194/acp-7-6099-2007, URL http://www.atmos-chem-phys.net/7/6099/2007/ (2007)
  • Brühl, C., Steil, B., Stiller, G., Funke, B., & Jöckel, P.: Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1, Atmospheric Chemistry and Physics, 7, 5585–5598, doi: 10.5194/acp-7-5585-2007, URL http://www.atmos-chem-phys.net/7/5585/2007/ (2007)
  • Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., & Lohmann, U.: Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget, Atmospheric Chemistry and Physics, 7, 5061–5079, doi: 10.5194/acp-7-5061-2007, URL http://www.atmos-chem-phys.net/7/5061/2007/ (2007)
  • Tost, H., Jöckel, P., & Lelieveld, J.: Lightning and convection parameterisations – uncertainties in global modelling, Atmospheric Chemistry and Physics, 7, 4553–4568, doi: 10.5194/acp-7-4553-2007, URL http://www.atmos-chem-phys.net/7/4553/2007/ (2007b)
  • Stiller, G. P., von Clarmann, T., Brühl, C., Fischer, H., Funke, B., Glatthor, N., Grabowski, U., Höpfner, M., Jöckel, P., Kellmann, S., Kiefer, M., Linden, A., López-Puertas, M., Tsidu, G. M., Milz, M., Steck, T., & Steil, B.: Global distributions of HO2NO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), J. Geophys. Res., 112, D09314, doi: 10.1029/2006JD007212, URL http://www.agu.org/journals/jd/jd0709/2006JD007212/ (2007)
  • Kerkweg, A., Sander, R., Tost, H., Jöckel, P., & Lelieveld, J.: Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO, Atmospheric Chemistry and Physics, 7, 2973–2985, doi: 10.5194/acp-7-2973-2007, URL http://www.atmos-chem-phys.net/7/2973/2007/ (2007)
  • Nissen, K. M., Matthes, K., Langematz, U., & Mayer, B.: Towards a better representation of the solar cycle in general circulation models, Atmospheric Chemistry and Physics, 7, 5391–5400, doi: 10.5194/acp-7-5391-2007, URL http://www.atmos-chem-phys.net/7/5391/2007/ (2007)
  • Lelieveld, J., Brühl, C., Jöckel, P., Steil, B., Crutzen, P. J., Fischer, H., Giorgetta, M. A., Hoor, P., Lawrence, M. G., Sausen, R., & Tost, H.: Stratospheric dryness: model simulations and satellite observations, Atmospheric Chemistry and Physics, 7, 1313–1332, doi: 10.5194/acp-7-1313-2007, URL http://www.atmos-chem-phys.net/7/1313/2007/ (2007)
  • Tost, H., Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., & Lelieveld, J.: Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1, Atmospheric Chemistry and Physics, 7, 2733–2757, doi: 10.5194/acp-7-2733-2007, URL http://www.atmos-chem-phys.net/7/2733/2007/ (2007a)
  • Pozzer, A., Jöckel, P., Tost, H., Sander, R., Ganzeveld, L., Kerkweg, A., & Lelieveld, J.: Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations, Atmospheric Chemistry and Physics, 7, 2527–2550, doi: 10.5194/acp-7-2527-2007, URL http://www.atmos-chem-phys.net/7/2527/2007/ (2007)
  • Pozzer, A.: Simulating short lived carbonaceous compounds with an atmospheric chemistry general circulation model, Ph.D. thesis, Johannes Gutenberg University Mainz, URL http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hebis:77-13153 (2007)

2006

  • Tost, H., Jöckel, P., & Lelieveld, J.: Influence of different convection parameterisations in a GCM, Atmospheric Chemistry and Physics, 6, 5475–5493, doi: 10.5194/acp-6-5475-2006, URL http://www.atmos-chem-phys.net/6/5475/2006/ (2006b)
  • Pozzer, A., Jöckel, P., Sander, R., Williams, J., Ganzeveld, L., & Lelieveld, J.: Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species, Atmospheric Chemistry and Physics, 6, 5435–5444, doi: 10.5194/acp-6-5435-2006, URL http://www.atmos-chem-phys.net/6/5435/2006/ (2006)
  • Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., & Lelieveld, J.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere, Atmospheric Chemistry and Physics, 6, 5067–5104, doi: 10.5194/acp-6-5067-2006, URL http://www.atmos-chem-phys.net/6/5067/2006/ (2006)
  • Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., & Jöckel, P.: Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy), Atmospheric Chemistry and Physics, 6, 4617–4632, doi: 10.5194/acp-6-4617-2006, URL http://www.atmos-chem-phys.net/6/4617/2006/ (2006a)
  • Kerkweg, A., Sander, R., Tost, H., & Jöckel, P.: Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy), Atmospheric Chemistry and Physics, 6, 3603–3609, doi: 10.5194/acp-6-3603-2006, URL http://www.atmos-chem-phys.net/6/3603/2006/ (2006b)
  • Jöckel, P.: Technical note: Recursive rediscretisation of geo-scientific data in the Modular Earth Submodel System (MESSy), Atmospheric Chemistry and Physics, 6, 3557–3562, doi: 10.5194/acp-6-3557-2006, URL http://www.atmos-chem-phys.net/6/3557/2006/ (2006)
  • Tost, H., Jöckel, P., Kerkweg, A., Sander, R., & Lelieveld, J.: Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling, Atmospheric Chemistry and Physics, 6, 565–574, doi: 10.5194/acp-6-565-2006, URL http://www.atmos-chem-phys.net/6/565/2006/ (2006a)
  • Tost, H.: Global Modelling of Cloud, Convection and Precipitation Influences on Trace Gases and Aerosols, Ph.D. thesis, University Bonn, URL http://nbn-resolving.de/urn:nbn:de:hbz:5N-07314 (2006)

2005

  • Sander, R., Kerkweg, A., Jöckel, P., & Lelieveld, J.: Technical note: The new comprehensive atmospheric chemistry module MECCA, Atmospheric Chemistry and Physics, 5, 445–450, doi: 10.5194/acp-5-445-2005, URL http://www.atmos-chem-phys.net/5/445/2005/ (2005)
  • Jöckel, P., Sander, R., Kerkweg, A., Tost, H., & Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) – a new approach towards Earth System Modeling, Atmospheric Chemistry and Physics, 5, 433–444, doi: 10.5194/acp-5-433-2005, URL http://www.atmos-chem-phys.net/5/433/2005/ (2005)
  • Kerkweg, A.: Global Modelling of Atmospheric Halogen Chemistry in the Marine Boundary Layer, Ph.D. thesis, University of Bonn, Germany, URL http://hss.ulb.uni-bonn.de/2005/0636/0636.htm (2005)
  • Buchholz, J.: Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model, Ph.D. thesis, Johannes Gutenberg University Mainz, URL http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hebis:77-8187 (2005)

2004